The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex.

Neural Plast

Department of Psychiatry, University Hospital Geneva, Chêne-Bourg, 1225 Geneva, Switzerland; Geneva Neuroscience Center, Geneva University, 1211 Geneva, Switzerland.

Published: December 2016

The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735929PMC
http://dx.doi.org/10.1155/2016/3707406DOI Listing

Publication Analysis

Top Keywords

all-trans retinoic
8
retinoic acid
8
double-strand breaks
8
alzheimer's disease
8
repair aβ-induced
8
aβ-induced dsbs
8
sh-sy5y cells
8
young aged
8
aged mice
8
vitamin derivative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!