Background: Late-onset fetal growth restriction (FGR) is often undetected prior to birth, which puts the fetus at increased risk of adverse perinatal outcomes including stillbirth.
Objective: Measuring RNA circulating in the maternal blood may provide a noninvasive insight into placental function. We examined whether measuring RNA in the maternal blood at 26-30 weeks' gestation can identify pregnancies at risk of late-onset FGR. We focused on RNA highly expressed in placenta, which we termed "placental-specific genes."
Study Design: This was a case-control study nested within a prospective cohort of 600 women recruited at 26-30 weeks' gestation. The circulating placental transcriptome in maternal blood was compared between women with late-onset FGR (<5th centile at >36+6 weeks) and gestation-matched well-grown controls (20-95th centile) using microarray (n = 12). TaqMan low-density arrays, reverse transcription-polymerase chain reaction (PCR), and digital PCR were used to validate the microarray findings (FGR n = 40, controls n = 80).
Results: Forty women developed late-onset FGR (birthweight 2574 ± 338 g, 2nd centile) and were matched to 80 well-grown controls (birthweight 3415 ± 339 g, 53rd centile, P < .05). Operative delivery and neonatal admission were higher in the FGR cohort (45% vs 23%, P < .05). Messenger RNA coding 137 placental-specific genes was detected in the maternal blood and 37 were differentially expressed in late-onset FGR. Seven were significantly dysregulated with PCR validation (P < .05). Activating transcription factor-3 messenger RNA transcripts were the most promising single biomarker at 26-30 weeks: they were increased in fetuses destined to be born FGR at term (2.1-fold vs well grown at term, P < .001) and correlated with the severity of FGR. Combining biomarkers improved prediction of severe late-onset FGR (area under the curve, 0.88; 95% CI 0.80-0.97). A multimarker gene expression score had a sensitivity of 79%, a specificity of 88%, and a positive likelihood ratio of 6.2 for subsequent delivery of a baby <3rd centile at term.
Conclusion: A unique placental transcriptome is detectable in maternal blood at 26-30 weeks' gestation in pregnancies destined to develop late-onset FGR. Circulating placental RNA may therefore be a promising noninvasive test to identify pregnancies at risk of developing FGR at term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2016.01.191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!