Host immunity against bacteria typically involves antibodies that recognize the microbial surface and promote phagocytic killing. Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of lethal bloodstream infection; however, vaccines and antibody therapeutics targeting staphylococcal surface molecules have thus far failed to achieve clinical efficacy. S. aureus secretes coagulase (Coa), which activates host prothrombin and generates fibrin fibrils that protect the pathogen against phagocytosis by immune cells. Because of negative selection, the coding sequence for the prothrombin-binding D1-D2 domain is highly variable and does not elicit cross-protective immune responses. The R domain, tandem repeats of a 27-residue peptide that bind fibrinogen, is conserved at the C terminus of all Coa molecules, but its functional significance is not known. We show here that the R domain enables bloodstream infections by directing fibrinogen to the staphylococcal surface, generating a protective fibrin shield that inhibits phagocytosis. The fibrin shield can be marked with R-specific antibodies, which trigger phagocytic killing of staphylococci and protect mice against lethal bloodstream infections caused by a broad spectrum of MRSA isolates. These findings emphasize the critical role of coagulase in staphylococcal escape from opsonophagocytic killing and as a protective antigen for S. aureus vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813671 | PMC |
http://dx.doi.org/10.1084/jem.20150074 | DOI Listing |
Nat Commun
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages.
View Article and Find Full Text PDFPLoS Pathog
January 2025
School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.
Porphyromonas gingivalis (Pg) is a keystone pathogen in periodontitis, a highly prevalent disease manifested by chronic inflammation of the periodontium, alveolar bone resorption and tooth loss. During periodontitis pathobionts such as Pg can enter the bloodstream and growing evidence correlates periodontitis with increased risk of cardiovascular and neurodegenerative diseases. However, the mechanism by which immune cells respond to Pg challenge in vivo remains elusive.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:
Curr Microbiol
January 2025
Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.
View Article and Find Full Text PDFTheranostics
January 2025
College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!