Bitter taste receptors confer diverse functions to neurons.

Elife

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States.

Published: February 2016

Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764594PMC
http://dx.doi.org/10.7554/eLife.11181DOI Listing

Publication Analysis

Top Keywords

bitter taste
8
taste receptors
8
logic bitter
8
bitter grs
8
novel responses
8
bitter
7
receptors confer
4
confer diverse
4
diverse functions
4
functions neurons
4

Similar Publications

Strychni Semen, characterized by its bitter taste and warm properties, has been confirmed to possess anti-tumor properties. However, the molecular mechanism of Strychni Semen in treating non-small cell lung cancer (NSCLC) needs further study. This study aimed to explore the molecular mechanism of Strychni Semen in treating NSCLC based on network pharmacology and molecular docking.

View Article and Find Full Text PDF

Purpose: The present study investigated the effect of unpleasant salty or bitter tastes on cycling sprint performance and knee-extensor force characteristics in different fatigue states.

Methods: Following a familiarization session, 11 trained male cyclists completed 3 experimental trials (salty, bitter, and water) in a randomized crossover order. In each trial, participants cycled at 85% of the respiratory compensation point for 45 minutes and then, after a 5-minute rest, completed a 1-minute sprint.

View Article and Find Full Text PDF

Plant metabolites known as cucurbitacins are known to impart an unpleasant bitter taste to edible fruits and even lead to severe health complications after the ingestion of relatively high amounts. In this study, an analytical method based on reversed phase liquid chromatography with combined detection by UV spectroscopy and atmospheric pressure chemical ionization high-resolution single/tandem mass spectrometry was applied to confirm the occurrence of four cucurbitacins (B, D, and R, and 23,24-dihydro cucurbitacin B) previously inferred in unexpectedly bitter-tasting fruits of an Italian variety (Scopatizzo) of unripe melon (Cucumis melo L.), known for the sweetness of its fruits.

View Article and Find Full Text PDF

Introduction: Variation in common taste receptor type 2 member 38 (TAS2R38) haplotypes is associated with bitter taste sensitivity, but there is not much or inconsistent evidence on association with food cravings and with chronic disease risk factors. We have conducted a cross-sectional study to assess whether genetically defined taster groups would differ in their sensitivity to bitter-tasting compounds, cravings for various food groups, and risk of chronic disease risk factors.  Methodology: A total of 116 non-diabetic individuals were recruited from the Loma Linda University (LLU) campus.

View Article and Find Full Text PDF

Roasting degrades the coffee compound mozambioside (1) into several products, including 17-O-β-D-glucosyl-11-hydroxycafestol-2-one (2), 11-O-β-D-glucosyl-16-desoxycafestol-2-one (3), 11-O-β-D-glucosyl-(S)-16-desoxy-17-oxocafestol-2-one (4), 11-O-β-D-glucosyl-15,16-dehydrocafestol-2-one (5), 11-O-β-D-glucosyl-(R)-16-desoxy-17-oxocafestol-2-one (6), bengalensol (7), and 11-hydroxycafestol-2-one (8). A UHPLC-MS/MS method was established to quantify 1-8 and monitor their formation during authentic coffee roasting. Concentrations of 1 and the dominant roasting products 4, 5, and 7 ranged from 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!