In Nature, enzymes provide hydrophobic cavities and channels for sequestering small alkanes or long-chain alkyl groups from water. Similarly, the porous metal oxide capsule [{Mo(VI) 6 O21 (H2 O)6 }12 {(Mo(V) 2 O4 )30 (L)29 (H2 O)2 }](41-) (L=propionate ligand) features distinct domains for sequestering differently sized alkanes (as in Nature) as well as internal dimensions suitable for multi-alkane clustering. The ethyl tails of the 29 endohedrally coordinated ligands, L, form a spherical, hydrophobic "shell", while their methyl end groups generate a hydrophobic cavity with a diameter of 11 Å at the center of the capsule. As such, C7 to C3 straight-chain alkanes are tightly intercalated between the ethyl tails, giving assemblies containing 90 to 110 methyl and methylene units, whereas two or three ethane molecules reside in the central cavity of the capsule, where they are free to rotate rapidly, a phenomenon never before observed for the uptake of alkanes from water by molecular cages or containers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201511341DOI Listing

Publication Analysis

Top Keywords

ethyl tails
8
alkanes
5
uptake assembly
4
assembly alkanes
4
alkanes porous
4
porous nanocapsule
4
nanocapsule water
4
hydrophobic
4
water hydrophobic
4
hydrophobic confinement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!