High-Resolution Mapping of the Folding Transition State of a WW Domain.

J Mol Biol

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

Published: April 2016

Fast-folding WW domains are among the best-characterized systems for comparing experiments and simulations of protein folding. Recent microsecond-resolution experiments and long duration (totaling milliseconds) single-trajectory modeling have shown that even mechanistic changes in folding kinetics due to mutation can now be analyzed. Thus, a comprehensive set of experimental data would be helpful to benchmark the predictions made by simulations. Here, we use T-jump relaxation in conjunction with protein engineering and report mutational Φ-values (Φ(M)) as indicators for folding transition-state structure of 65 side chain, 7 backbone hydrogen bond, and 6 deletion and /or insertion mutants within loop 1 of the 34-residue hPin1 WW domain. Forty-five cross-validated consensus mutants could be identified that provide structural constraints for transition-state structure within all substructures of the WW domain fold (hydrophobic core, loop 1, loop 2, β-sheet). We probe the robustness of the two hydrophobic clusters in the folding transition state, discuss how local backbone disorder in the native-state can lead to non-classical Φ(M)-values (Φ(M) > 1) in the rate-determining loop 1 substructure, and conclusively identify mutations and positions along the sequence that perturb the folding mechanism from loop 1-limited toward loop 2-limited folding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835268PMC
http://dx.doi.org/10.1016/j.jmb.2016.02.008DOI Listing

Publication Analysis

Top Keywords

folding transition
8
transition state
8
transition-state structure
8
folding
7
loop
6
high-resolution mapping
4
mapping folding
4
state domain
4
domain fast-folding
4
fast-folding domains
4

Similar Publications

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils.

View Article and Find Full Text PDF

Moderately mechanically activated starch in improving protein digestibility: Application in noodles.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China. Electronic address:

The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.

View Article and Find Full Text PDF

Stored elastic bending tension as a mediator of embryonic body folding.

Cell Rep

January 2025

Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel. Electronic address:

During development, amniote vertebrate embryos transform from a flat sheet into a three-dimensional cylindrical form through ventral folding of the lateral sides of the sheet (the lateral plate [LP]) and their fusion in the ventral midline. Using a chick embryo slice system, we find that the flat stage is actually a poised balance of opposing dorsal and ventral elastic bending tensions. An intact extracellular matrix (ECM) is required for generating tension, as localized digestion of ECM dissipates tension, while removal of endoderm or ectoderm layers has no significant effect.

View Article and Find Full Text PDF

Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from sequences based on their distinctive sequence signatures.

Areas Covered: We overview 20 years of progress in the sequence-based prediction of MoRFs which resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides, and lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!