High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3 NH3 PbI3.

Adv Mater

Group for Molecular Engineering of Functional Materials, EPFL Valais Wallis, Rue de l'industrie 17, CH-1951, Sion, Switzerland.

Published: April 2016

A new aliphatic fluorinated amphiphilic additive is added to CH3 NH3 PbI3 perovskite to tune the morphology and enhance the environmental stability without sacrificing the performance of the devices. Judicious screening of the perovskite precursor solution realizes a power conversion efficiency of 18.0% for mesoporous perovskite solar cells as a result of improved surface coverage. A slower degradation in ambient air is observed with this modified perovskite.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201505255DOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
solar cells
8
environmental stability
8
ch3 nh3
8
nh3 pbi3
8
high-performance perovskite
4
cells enhanced
4
enhanced environmental
4
stability based
4
based amphiphile-modified
4

Similar Publications

Scrutinizing the untapped potential of emerging ABSe (A = Ca, Ba; B = Zr, Hf) chalcogenide perovskites solar cells.

Sci Rep

January 2025

Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, C.P.76010, Querétaro, México.

ABSchalcogenide perovskites (CPs) are emerging as promising alternatives to lead halide perovskites due to their unique properties. However, their bandgap exceeds the Shockley-Queisser limit. By substituting S with Se, the bandgap is significantly reduced, shifting it from the visible into the near-infrared region.

View Article and Find Full Text PDF

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Thermal co-evaporation of halide perovskites is a solution-free, conformal, scalable, and controllable deposition technique with great potential for commercial applications, particularly in multi-junction solar cells. Monolithic triple-junction perovskite solar cells have garnered significant attention because they can achieve very high efficiencies. Nevertheless, challenges arise in fabricating these devices, as they require multiple layers and precise current matching across complex absorber stacks.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

A strong n-type perovskite layer is crucial in achieving high open-circuit voltage (V) and power conversion efficiency (PCE) in the p-i-n solar cells, as the weak n-type perovskites result in a loss of V, and the p-type perovskites contain numerous electron traps that cause the severe carrier recombination. Here, three types of perylene diimide (PDI) based small molecule dopants with different dimensions, including 1D-PDI, 2D-PDI, and 3D-PDI are designed, to produce heavier n-type perovskites. The PDI-based molecules with Selenium atoms have a strong electron-donating ability, effectively enlarging the quasi-Fermi level splitting within the perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!