A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy.

Clin Genet

Department of Bioinformatics, Centogene AG, Rostock, Germany.

Published: December 2016

Intraflagellar transport (IFT) is vital for the functioning of primary cilia. Defects in several components of IFT complexes cause a spectrum of ciliopathies with variable involvement of skeleton, brain, eyes, ectoderm and kidneys. We examined a child from a consanguineous family who had short stature, narrow thorax, short hands and feet, postaxial polydactyly of hands, pigmentary retinopathy, small teeth and skeletal dysplasia. The clinical phenotype of the child shows significant overlap with cranioectodermal dysplasia type I (Sensenbrenner syndrome). Whole-exome sequencing revealed a homozygous nonsense variant p.R142* in IFT52 encoding an IFT-B core complex protein as the probable cause of her condition. This is the first report of a human disease associated with IFT52.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.12762DOI Listing

Publication Analysis

Top Keywords

homozygous nonsense
8
nonsense variant
8
variant ift52
4
ift52 associated
4
associated human
4
human skeletal
4
skeletal ciliopathy
4
ciliopathy intraflagellar
4
intraflagellar transport
4
transport ift
4

Similar Publications

Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.

Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.

Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.

View Article and Find Full Text PDF

Background: Pathogenic mutations in the CFTR gene disrupt the normal function of the chloride ion channel CFTR protein, resulting in Cystic Fibrosis (C.F.).

View Article and Find Full Text PDF

A human induced pluripotent stem cell (hiPSC) line (UCLi025-A) was generated from dermal fibroblast cells from a 42-year-old female donor with polyneuropathy, hearing loss, retinitis pigmentosa and early-onset cataract (PHARC) syndrome carrying a homozygous nonsense variant in ABHD12 c.193C>T, p.(Arg65*).

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

CD300a and CD300A, among the CD300 immunoglobulin (Ig)-like receptor family members in mice and humans, respectively, are expressed on myeloid cell lineage. The interaction of CD300a and CD300A with their ligands phosphatidylserine and phosphatidylethanolamine, respectively, exposed on the plasma membrane of dead cells mediate an inhibitory signal in myeloid cells. We previously reported that a neutralizing antimouse CD300a monoclonal antibody (mAb) enhanced efferocytosis by macrophages and ameliorated acute ischemic stroke (AIS) in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!