Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201504436DOI Listing

Publication Analysis

Top Keywords

supercritical fluids
12
advanced materials
8
graphene materials
8
supercritical-fluid processing
8
materials
6
processing
5
prospects supercritical
4
fluids realizing
4
realizing graphene-based
4
graphene-based functional
4

Similar Publications

Comparative Analysis of Chemical Composition and Antibacterial Activity of Essential Oils from Five Varieties of Extracted via Supercritical Fluid Extraction.

Molecules

January 2025

Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.

This study aimed to determine the chemical composition of five essential oils (LEOs) using the gas chromatography-mass spectroscopy technique and to assess their antibacterial activity against four marine species, including , , , and . Sensitivity tests were performed using the disk diffusion and serial dilution methods. The results showed that all five LEOs exhibited antibacterial activity against the four tested marine species.

View Article and Find Full Text PDF

Ensuring long-term wellbore integrity is critical for carbon dioxide geological storage. Ordinary Portland cement (PC) is usually used for wellbore primary cementing and plug operation, and set cement is easily corroded by acidic fluids, such as carbon dioxide, in underground high-temperature and high-pressure (HTHP) environments, resulting in a decrease in the mechanical properties and an increase in permeability. In order to achieve long-term wellbore integrity in a CO-rich environment This study introduces materials such as thermosetting vinyl ester resin (TSR), filler composite resin (FCR), and low-cost resin cement (RC).

View Article and Find Full Text PDF

Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach.

View Article and Find Full Text PDF

Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients.

Foods

January 2025

National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Background: Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry.

View Article and Find Full Text PDF

Sustainable agro-waste revaluation is critical to enhance the profitability and environmental footprint of the olive oil industry. Herein, the valorization of olive leaf pruning waste from five cultivars ('Caiazzana', 'Carolea', 'Itrana', 'Leccino', and 'Frantoio') employed green extraction methods to recover compounds with potential health benefits. Sequential ultrasound-assisted maceration (UAM) in -hexane and ethanol was compared with a compressed fluid extraction strategy consisting of supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for their efficiency in recovering distinct classes of bioactives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!