AI Article Synopsis

  • Brown seaweeds, particularly Ascophyllum nodosum, contain phlorotannins, unique polyphenols linked to potential health benefits, but there is limited research on their bioavailability and bioactivity in humans.
  • In an investigation, the digestion and metabolic processes of phlorotannins from A. nodosum were examined, revealing that they are metabolized and absorbed primarily in the large intestine, with identifiable metabolites found in urine and plasma.
  • The study identified inter-individual variation in metabolic profiles and noted a significant increase in the inflammatory cytokine IL-8, indicating a potential target for the bioactivity of phlorotannins.

Article Abstract

Brown seaweeds such as Ascophyllum nodosum are a rich source of phlorotannins (oligomers and polymers of phloroglucinol units), a class of polyphenols that are unique to Phaeophyceae. At present, there is no information on the bioavailability of seaweed polyphenols and limited evidence on their bioactivity in vivo. Consequently, we investigated the gastrointestinal modifications in vitro of seaweed phlorotannins from A. nodosum and their bioavailability and effect on inflammatory markers in healthy participants. In vitro, some phlorotannin oligomers were identified after digestion and colonic fermentation. In addition, seven metabolites corresponding to in vitro-absorbed metabolites were identified. Urine and plasma samples contained a variety of metabolites attributed to both unconjugated and conjugated metabolites (glucuronides and/or sulphates). In both urine and plasma, the majority of the metabolites were found in samples collected at late time points (6-24 h), suggesting colonic metabolism of high-molecular-weight phlorotannins, with three phlorotannin oligomers (hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol) identified in urine samples. A significant increase of the cytokine IL-8 was also observed. Our study shows for the first time that seaweed phlorotannins are metabolised and absorbed, predominantly in the large intestine, and there is a large inter-individual variation in their metabolic profile. Three phlorotannin oligomers present in the capsule are excreted in urine. Our study is the first investigation of the metabolism and bioavailability of seaweed phlorotannins and the role of colonic biotransformation. In addition, IL-8 is a possible target for phlorotannin bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114516000210DOI Listing

Publication Analysis

Top Keywords

seaweed phlorotannins
16
phlorotannin oligomers
12
gastrointestinal modifications
8
inflammatory markers
8
bioavailability seaweed
8
identified urine
8
urine plasma
8
three phlorotannin
8
phlorotannins
6
seaweed
5

Similar Publications

Phlorotannin-Rich Seaweed Extract Inhibits Influenza Infection.

Viruses

December 2024

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.

Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.

View Article and Find Full Text PDF

is an invasive brown macroalga that has recently proliferated in the western Mediterranean Sea, causing significant environmental challenges. This alga, however, contains valuable bioactive compounds-alginate, mannitol, and phlorotannins-that can serve as biofertilizers to promote plant growth and aid in bioremediation of degraded or contaminated soils. This study focused on optimizing the extraction of these compounds from , transforming an ecological issue into a beneficial resource.

View Article and Find Full Text PDF

The Beneficial Roles of Seaweed in Atopic Dermatitis.

Mar Drugs

December 2024

Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea.

Atopic dermatitis (AD) is a chronic, inflammatory skin condition characterized by severe pruritus and recurrent flare-ups, significantly impacting patients' quality of life. Current treatments, such as corticosteroids and immunomodulators, often provide symptomatic relief but can lead to adverse effects with prolonged use. Seaweed, a sustainable and nutrient-dense resource, has emerged as a promising alternative due to its rich bioactive compounds-polysaccharides, phlorotannins, polyphenols, and chlorophyll-that offer anti-inflammatory, antioxidant, and immunomodulatory properties.

View Article and Find Full Text PDF

Bioactive Compounds of Sea Mustard () Waste Affected by Drying Methods.

Foods

November 2024

Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea.

Sea mustard () is a brown macroalga extensively cultivated and consumed in South Korea. However, the high volume of seaweed production in the country results in substantial waste generation. To mitigate this issue, the bioactive compounds of sea mustard waste parts (sporophyll, root, and stem) were assessed under different drying conditions (freeze, oven, and microwave drying) to evaluate their potential as functional ingredients.

View Article and Find Full Text PDF

Cancer remains a major global health concern, with breast cancer being particularly challenging. To address this, new therapeutic strategies are being explored, including natural alternatives. Seaweeds, rich in bioactive compounds, have gained attention for their therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!