This study demonstrates the ability of ammonium uranyl peroxide nanoclusters U32R-NH4 to undergo exchange in between NH4(+) and trivalent (Nd(3+)) or tetravalent (Th(4+)) cations in the solid state. It paves the way for new promising routes for the synthesis of mixed uranyl peroxides. The exchange ability may also be considered for solution decontamination and synthesis of new mixed actinide-oxide precursors. Both of these applications could be used in the nuclear industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc09527a | DOI Listing |
Inorg Chem
December 2024
School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
The photosynthesis of hydrogen peroxide (HO), involving water oxidation and oxygen reduction, is crucial for optimizing light utilization. Here, a previously synthesized one-dimensional chain-like semiconductive uranyl coordination polymer (NDC-UCP) was used for the efficient overall photosynthetic reaction of HO and its photocatalytic mechanism was systematically investigated. The excellent stability of NDC-UCP enables continuous HO production for up to 96 h.
View Article and Find Full Text PDFInorg Chem
November 2024
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Extraction of uranium from water is an essential step in leach (ISL) mining and environmental decontamination. This is often done by precipitating uranium in solution as the uranyl peroxide studtite, [(UO)(O)(HO)](HO), by adding hydrogen peroxide, which is energy-intensive to produce and hazardous to transport. Here, we present a method for synthesizing studtite, by generating reactive oxygen species in solution using a nonthermal plasma.
View Article and Find Full Text PDFDalton Trans
October 2024
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
The solid form of the uranyl peroxide cage (UPC) cluster LiU (Li[(UO)(O)]) was irradiated by 5 MeV He ions to achieve doses up to 42 MGy. An intermediate compound formed that reacts with atmospheric CO to form uranyl carbonates. The role of water in the UPC to uranyl carbonate transformation was studied by flowing either dry or hydrated Ar over samples during He irradiation, and by storing samples in dry and humid environments before and after irradiation.
View Article and Find Full Text PDFInorg Chem
September 2024
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Four uranyl peroxide compounds with novel structures were formed following the dissolution of studtite, [(UO)(O)(HO)](HO), in imidazolium-based ionic liquids. The compounds were characterized using single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Raman and infrared (IR) spectroscopy, and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The ionic liquids used in the experiments were 1-ethyl-3-methylimidazolium (EMIm) diethyl phosphate, EMIm ethyl sulfate, and EMIm acetate.
View Article and Find Full Text PDFChem Commun (Camb)
September 2024
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
U(VI) peroxides are important within the nuclear fuel cycle, but reactive oxygen species (ROS) can form upon oxidation. Herein, we identified the spectral signatures of a U(VI) diperoxosuperoxide complex (KUPS-1) and observed that the transformation of U(VI) triperoxide (KUT-1) to superoxide forms occurred with trace-level Cr. U(VI) superoxide complexes were identified in EPR solution spectra without the use of spin-traps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!