A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Immunochip Analyses of Epistasis in Rheumatoid Arthritis Confirm Multiple Interactions within MHC and Suggest Novel Non-MHC Epistatic Signals. | LitMetric

Immunochip Analyses of Epistasis in Rheumatoid Arthritis Confirm Multiple Interactions within MHC and Suggest Novel Non-MHC Epistatic Signals.

J Rheumatol

From the Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.W.H. Wei*, PhD, Lecturer in Statistical Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; C.Y. Loh*, MRes, PhD Student, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; J. Worthington, PhD, Professor of Chronic Disease Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre; S. Eyre, PhD, Senior Research Fellow on Rheumatological Disorders, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre.

Published: May 2016

Objective: Studying statistical gene-gene interactions (epistasis) has been limited by the difficulties in performance, both statistically and computationally, in large enough sample numbers to gain sufficient power. Three large Immunochip datasets from cohort samples recruited in the United Kingdom, United States, and Sweden with European ancestry were used to examine epistasis in rheumatoid arthritis (RA).

Methods: A full pairwise search was conducted in the UK cohort using a high-throughput tool and the resultant significant epistatic signals were tested for replication in the United States and Swedish cohorts. A forward selection approach was applied to remove redundant signals, while conditioning on the preidentified additive effects.

Results: We detected abundant genome-wide significant (p < 1.0e-13) epistatic signals, all within the MHC region. These signals were reduced substantially, but a proportion remained significant (p < 1.0e-03) in conditional tests. We identified 11 independent epistatic interactions across the entire MHC, each explaining on average 0.12% of the phenotypic variance, nearly all replicated in both replication cohorts. We also identified non-MHC epistatic interactions between RA susceptible loci LOC100506023 and IRF5 with Immunochip-wide significance (p < 1.1e-08) and between 2 neighboring single-nucleotide polymorphism near PTPN22 that were in low linkage disequilibrium with independent interaction (p < 1.0e-05). Both non-MHC epistatic interactions were statistically replicated with a similar interaction pattern in the US cohort only.

Conclusion: There are multiple but relatively weak interactions independent of the additive effects in RA and a larger sample number is required to confidently assign additional non-MHC epistasis.

Download full-text PDF

Source
http://dx.doi.org/10.3899/jrheum.150836DOI Listing

Publication Analysis

Top Keywords

non-mhc epistatic
12
epistatic signals
12
epistatic interactions
12
epistasis rheumatoid
8
rheumatoid arthritis
8
united states
8
interactions
6
epistatic
6
signals
5
immunochip analyses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!