Angiotensin II type 1 receptor (AT1-R) blockers protect against brain ischemia by mechanisms dependent on and independent of arterial blood pressure. However, the effects of AT1-R blockers on brain endothelial cell injury and detailed mechanisms remain unclear. The goal of this study is to investigate whether azilsartan, an AT1-R blocker, could attenuate oxidative injury in endothelial cells via regulating mitochondrial function and inflammatory responses. We found that treatment with azilsartan suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in murine brain endothelial cells (mBECs) by increasing cell viability, decreasing lactate dehydrogenase (LDH) release and inhibiting cell apoptosis. Azilsartan significantly inhibited reactive oxygen species (ROS) generation and lipid peroxidation, but had no effect on antioxidant system. We also detected preserved mitochondrial function after azilsartan treatment, as evidenced by increased mitochondrial membrane potential (MMP), reduced cytochrome c release, preserved ATP synthesis and inhibited mitochondrial swelling. In addition, azilsartan differently regulated expression of inflammatory cytokines and increased the activation of endothelial nitric oxide synthase (eNOS). Pretreatment with eNOS inhibitor L-NIO partially prevented the azilsartan-induced regulation of cytokines and protection. Furthermore, azilsartan-induced protection in our in vitro model was shown to be associated with protein stability of peroxisome proliferator-activated receptor-γ (PPAR-γ). Overall, our data suggest that the AT1-R blocker azilsartan may have therapeutic values in treating endothelial dysfunction associated neurological disorders through anti-oxidative and anti-inflammatory properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2016.02.005DOI Listing

Publication Analysis

Top Keywords

angiotensin type
8
type receptor
8
endothelial cell
8
cell injury
8
at1-r blockers
8
brain endothelial
8
at1-r blocker
8
endothelial cells
8
mitochondrial function
8
azilsartan
7

Similar Publications

Small Interfering RNA Therapy for the Management and Prevention of Hypertension.

Curr Hypertens Rep

January 2025

Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.

Purpose Of Review: To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen.

Recent Findings: Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control.

View Article and Find Full Text PDF

Comparative immunogenicity from different mRNA booster vaccines (directed at WT, BA.1 or BA.4/5 antigens) remains unclear.

View Article and Find Full Text PDF

Dysregulated autoantibodies targeting AGTR1 are associated with the accumulation of COVID-19 symptoms.

NPJ Syst Biol Appl

January 2025

BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.

Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.

View Article and Find Full Text PDF

Real-world effectiveness and safety of sodium-glucose co-transporter 2 inhibitors in chronic kidney disease.

Sci Rep

January 2025

Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Article Synopsis
  • SGLT2 inhibitors (SGLT2i) show promise in slowing chronic kidney disease (CKD) progression but lack extensive real-world data in diverse populations.
  • This study analyzed data from nearly 7,000 CKD patients (stages 2-4) treated with either SGLT2i or RAAS blockers to evaluate effectiveness and safety.
  • Results indicated that SGLT2i therapy was linked to a significantly lower risk of severe kidney-related events and CKD progression, with similar adverse event rates and fewer urinary tract infections compared to RAAS treatment.
View Article and Find Full Text PDF

Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System.

Nutrients

December 2024

Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.

Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!