The science of how we use interaural differences to localise sounds has been studied for over a century and in many ways is well understood. But in many of these psychophysical experiments listeners are required to keep their head still, as head movements cause changes in interaural level and time differences (ILD and ITD respectively). But a fixed head is unrealistic. Here we report an analysis of the actual ILDs and ITDs that occur as people naturally move and relate them to gyroscope measurements of the actual motion. We used recordings of binaural signals in a number of rooms and listening scenarios (home, office, busy street etc). The listener's head movements were also recorded in synchrony with the audio, using a micro-electromechanical gyroscope. We calculated the instantaneous ILD and ITDs and analysed them over time and frequency, comparing them with measurements of head movements. The results showed that instantaneous ITDs were widely distributed across time and frequency in some multi-source environments while ILDs were less widely distributed. The type of listening environment affected head motion. These findings suggest a complex interaction between interaural cues, egocentric head movement and the identification of sound sources in real-world listening situations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750291 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!