Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the effects of algae species, reaction time, and reactor loading on the biocrude yield from fast hydrothermal liquefaction (HTL) of microalgae. Fast HTL reaction times were always less than 2 min and employed rapid heating and nonisothermal conditions. The highest biocrude yield obtained was 67±5 wt.% (dry basis). With all other process variables fixed, increasing the reaction time in a 600 °C sand bath by 15 s increments led to a rapid increase in biocrude yield between 15 and 45 s. At longer times, the biocrude yield decreased. Low reactor loadings generally gave higher biocrude yields than did higher loadings. The low reactor loadings may facilitate biocrude production by facilitating cell rupture and/or increasing the effective concentration of algal cells in the hot, compressed water in the reactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2016.01.115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!