Background: Marine cold-temperature environments are an invaluable source of psychrophilic microbial life for new biodiscoveries. An Arctic marine bacterial strain collection was established consisting of 1448 individual isolates originating from biota, water and sediment samples taken at a various depth in the Barents Sea, North of mainland Norway, with an all year round seawater temperature of 4 °C. The entire collection was subjected to high-throughput screening for detection of extracellular laccase activity with guaiacol as a substrate.

Results: In total, 13 laccase-positive isolates were identified, all belonging to the Psychrobacter genus. From the most diverse four strains, based on 16S rRNA gene sequence analysis, all originating from the same Botryllus sp. colonial ascidian tunicate sample, genomic DNA was isolated and genome sequenced using a combined approach of whole genome shotgun and 8 kb mate-pair library sequencing on an Illumina MiSeq platform. The genomes were assembled and revealed genome sizes between 3.29 and 3.52 Mbp with an average G + C content of around 42%, with one to seven plasmids present in the four strains. Bioinformatics based genome mining was performed to describe the metabolic potential of these four strains and to identify gene candidates potentially responsible for the observed laccase-positive phenotype. Up to two different laccase-like multicopper oxidase (LMCO) encoding gene candidates were identified in each of the four strains. Heterologous expression of P11F6-LMCO and P11G5-LMCO2 in Escherichia coli BL21 (DE3) resulted in recombinant proteins exhibiting 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and guaiacol oxidizing activity.

Conclusions: Thirteen Psychrobacter species with laccase-positive phenotype were isolated from a collection of Arctic marine bacteria. Four of the isolates were genome sequenced. The overall genome features were similar to other publicly available Psychrobacter genome sequences except for P11G5 harboring seven plasmids. However, there were differences at the pathway level as genes associated with degradation of phenolic compounds, nicotine, phenylalanine, styrene, ethylbenzene, and ethanolamine were detected only in the Psychrobacter strains reported in this study while they were absent among the other publicly available Psychrobacter genomes. In addition, six gene candidates were identified by genome mining and shown to possess T1, T2 and T3 copper binding sites as the main signature of the three-domain laccases. P11F6-LMCO and P11G5-LMCO2 were recombinantly expressed and shown to be active when ABTS and guaiacol were used as substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754876PMC
http://dx.doi.org/10.1186/s12864-016-2445-4DOI Listing

Publication Analysis

Top Keywords

arctic marine
12
gene candidates
12
psychrobacter strains
8
multicopper oxidase
8
genome
8
genome sequenced
8
genome mining
8
laccase-positive phenotype
8
candidates identified
8
p11f6-lmco p11g5-lmco2
8

Similar Publications

Warming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.

View Article and Find Full Text PDF

Fatty acid carbon isotopes as tracers of trophic structure and contaminant biomagnification in Arctic marine food webs.

Sci Total Environ

January 2025

Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:

Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.

View Article and Find Full Text PDF

Recent rapid sea ice reduction in the Pacific sector of the Arctic Ocean is potentially associated with inflow of Pacific-origin water via the Bering Strait. For the first time, we detected remarkable subsurface warming around the Chukchi Borderland in the Arctic Ocean over the recent two decades (i.e.

View Article and Find Full Text PDF

Novel peptides based on sea squirt as biocide enhancers to mitigate biocorrosion of EH36 steel.

Bioelectrochemistry

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Microbiologically influenced corrosion (MIC) affects offshore production activities severely. Although adding biocides is a simple method, it can cause environmental damage over time. Using green biocide enhancers is a viable strategy to reduce the amount of biocides.

View Article and Find Full Text PDF

Petroleum-derived contamination is a growing hazard for the Arctic Ocean and northern marine transportation corridors. In northern settings where the accessibility to oil spills can be limited, natural attenuation is the most promising remediation process. The goal of the presented research is to evaluate the impact of biodegradation on crude oil inside sea ice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!