Lupeol is a lupane-type triterpene isolated from Sorbus commixta, an oriental medicine used to treat arthritis and inflammatory diseases. However, the antiosteoporotic effects of S. commixta or any of its constituents have not been studied yet. In the present study, we have examined the effect of lupeol (a major active triterpenoid isolated from S. commixta) on osteoclastogenesis and sought to elucidate its underlying molecular mechanisms. We evaluated whether lupeol antagonized osteoclast differentiation and bone resorption. Lupeol markedly inhibited osteoclast differentiation and bone resorption activity through its effects on MAP kinases and transcription factors (NF-κB, NFATc1, and c-Fos) downstream of the osteoclast differentiation factor receptor RANK. Furthermore, in vivo efficacy of lupeol was confirmed by using an animal model of hypercalcemic mediated bone loss. Taken together, lupeol showed strong inhibitory effects on osteoclastogenesis. Supplementation with S. commixta and lupeol could be beneficial for bone health or osteoclast-related diseases such as osteoporosis, Paget's disease, osteolysis associated with periodontal disease, and multiple myeloma.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.5b01088DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
16
differentiation bone
12
lupeol
8
isolated sorbus
8
sorbus commixta
8
bone loss
8
bone resorption
8
commixta
5
bone
5
lupeol isolated
4

Similar Publications

Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP.

View Article and Find Full Text PDF

Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells.

View Article and Find Full Text PDF

GnIH secreted by green light exposure, regulates bone mass through the activation of Gpr147.

Bone Res

January 2025

Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China.

Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of osteoclast activation in vivo and in vitro.

View Article and Find Full Text PDF

Gut microbiota dysbiosis involved in decabromodiphenyl ether-induced bone homeostasis disorder through inflammaging.

Environ Pollut

January 2025

Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China. Electronic address:

BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both in vitro and in vivo models.

View Article and Find Full Text PDF

Extracellular vesicles derived from dental follicle stem cells regulate tooth eruption by inhibiting osteoclast differentiation.

Front Cell Dev Biol

December 2024

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.

Tooth eruption as a crucial part in tooth development and regeneration is accompanied by ongoing osteogenesis and osteoclast activity. The dental follicle (DF) surrounding the developing tooth harbors dental follicle stem cells (DFSCs) which play a crucial role in maintaining bone remodeling. However, the mechanisms through which they regulate the balance between osteogenesis and osteoclast activity during tooth eruption remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!