Insulin is the only hormone required for continued growth of Chinese hamster ovary CHO-K1 cells in the defined medium M-F12. When CHO-K1 cells are incubated in M-F12 without insulin for 48-72 hr, the cells accumulate in G1. In response to physiological concentrations of insulin an 18-fold increase in rate of DNA synthesis occurs due to cells entering S phase after an 8- to 10-hr lag; cell division begins after 24 hr. The inhibitory effect of actinomycin D and 5,6-dichlorobenzimidazole riboside indicates that RNA synthesis is required for progression to S phase. CHO-K1 cells possess insulin receptors, and the insulin effect results from insulin binding to its own receptor: (i) Binding occurs at physiological insulin concentrations with a half-maximal stimulation at approximately 14 ng/ml. (ii) At insulin concentrations used, insulin-like growth factor I and II (IGF-I and IGF-II) have little or no effect. (iii) Scatchard analysis of 125I-labeled insulin binding shows the curvilinear response typical of insulin. (iv) The Kd for the so-called high-affinity binding site and the Ke are characteristic of the insulin receptor. (v) At the minimal insulin concentrations that stimulate growth, IGF-I and IGF-II compete poorly with insulin for insulin binding, insulin competes poorly with IGF-I for IGF-I binding, and affinity labeling with 125I-labeled insulin identifies a polypeptide (Mr = 125,000) typical of the alpha subunit of the insulin receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC298481 | PMC |
http://dx.doi.org/10.1073/pnas.86.23.9294 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!