Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.

Sci Total Environ

Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden; Department of Analytical Chemistry and Environmental Science, Stockholm University, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden.

Published: May 2016

Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.01.213DOI Listing

Publication Analysis

Top Keywords

methyl chloride
8
chloride methyl
8
methyl bromide
8
ch3cl ch3br
8
functional groups
8
emissions breadbaking
8
methyl
7
emissions
4
bromide emissions
4
emissions baking
4

Similar Publications

Phenolic compounds, such as stilbenes and flavonoids, from spp. exhibit diverse biological activities, including antimicrobial, anti-inflammatory, and cytotoxicity properties. To this end, the objectives of this study were to establish hairy root cultures of and assess its capacity to produce these bioactive compounds.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Protolysis of AlMe or AlEt with 2-diisopropylphosphinopyrrole () resulted in alane/bis(phosphine) pincer ligands containing two flanking phosphines and a central Al-Me (), Al-Et () unit. Reactions of with [(COD)MI] (COD = 1,5-cyclooctadiene; M = Rh or Ir) in the presence of pyridine produced pincer complexes ( and ) with M supported by the PAlP tridentate ligand, and pyridine, methyl, and iodide as monodentate ligands for Al or M. The analogous reaction of with [(COD)MI] and pyridine resulted in the formation of the analogous compounds and with hydride in place of methyl.

View Article and Find Full Text PDF

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

Self-association of cyclodextrin inclusion complexes in a deep eutectic solvent enhances guest solubility.

Carbohydr Polym

March 2025

Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel. Electronic address:

Cyclodextrins are widely used pharmaceutical excipients known to increase the solubility of drug compounds through formation of inclusion complexes. A prominent limitation of common cyclodextrins is their own scarce solubility in water, which renders them unsuitable for many drug formulations. Cyclodextrin solubility can be enhanced in appropriate media such as Deep Eutectic Solvents (DESs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!