Biomimetic molecules lower catabolic expression and prevent chondroitin sulfate degradation in an osteoarthritic ex vivo model.

ACS Biomater Sci Eng

206 S Martin Jischke Drive, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907.

Published: February 2016

Aggrecan, the major proteoglycan in cartilage, serves to protect cartilage tissue from damage and degradation during the progression of osteoarthritis (OA). In cartilage extracellular matrix (ECM) aggrecan exists in an aggregate composed of several aggrecan molecules that bind to a single filament of hyaluronan. Each molecule of aggrecan is composed of a protein core and glycosaminoglycan sides chains, the latter of which provides cartilage with the ability to retain water and resist compressive loads. During the progression of OA, loss of aggrecan is considered to occur first, after which other cartilage matrix components become extremely susceptible to degradation. Proteolytic cleavage of the protein core of aggrecan by enzymes such as aggrecanases, prevent its binding to HA and lower cartilage mechanical strength. Here we present the use of HA-binding or collagen type II-binding molecules that functionally mimic aggrecan but lack known cleavage sites, protecting the molecule from proteolytic degradation. These molecules synthesized with chondroitin sulfate backbones conjugated to hyaluronan- or collagen type II- binding peptides, are capable of diffusing through a cartilage explant and adhering to the ECM of this tissue. The objective of this study was to test the functional efficacy of these molecules in an osteoarthritic model to discern the optimal molecule for further studies. Different variations of chondroitin sulfate conjugated to the binding peptides were diffused through aggrecan depleted explants and assessed for their ability to enhance compressive stiffness, prevent CS degradation, and modulate catabolic (MMP-13 and ADAMTS-5) and anabolic (aggrecan and collagen type II) gene expression. A pilot study assessed the ability to retain the molecule within the joint space of an osteoarthritic guinea pig model. The results indicate chondroitin sulfate conjugated to hyaluronan-binding peptides is able to significantly restore equilibrium modulus and prevent CS degradation. All molecules demonstrated the ability to lower catabolic gene expression in aggrecan depleted explants. In order to enhance biosynthesis and regeneration, the molecules need to be coupled with an external stimulant such as a growth factor. The chondroitin sulfate molecule synthesized with HA-binding peptides demonstrated adherence to cartilage tissue and retention up to 6 hours in an ambulatory joint. Further studies will monitor the residence time and ability of the molecules to act as a disease-modifying agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749183PMC
http://dx.doi.org/10.1021/acsbiomaterials.5b00458DOI Listing

Publication Analysis

Top Keywords

chondroitin sulfate
20
collagen type
12
aggrecan
10
lower catabolic
8
cartilage
8
cartilage tissue
8
protein core
8
ability retain
8
degradation molecules
8
binding peptides
8

Similar Publications

The trend of an annual increase in the detection of new cases of osteoarthritis (OA) and an increase in the number of patients with chronic lower back pain (LBP) calls for the search for new drugs and pharmaconutraceuticals with anti-inflammatory and chondroprotective properties. In 2019, approaches to the treatment of pain in OA significantly changed. In international and Russian clinical guidelines (CG), pharmaconutraceutical chondroitin sulfate (CS) and glucosamine sulfate (GS) are recommended for OA of different localization as a basic therapy.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.

View Article and Find Full Text PDF

Mass spectrometry-based investigation of the heterogeneous glycoproteome from complex biological specimens is a robust approach to mapping the structure, function, and dynamics of the glycome and proteome. Sampling whole wet tissues often provides a large amount of starting material; however, there is a reasonable variability in tissue handling prior to downstream processing steps, and it is difficult to capture all the different biomolecules from a specific region. The on-slide tissue digestion approach, outlined in this protocol chapter, is a simple and cost-effective method that allows comprehensive mapping of the glycoproteome from a single spot of tissue of 1 mm or greater diameter.

View Article and Find Full Text PDF

Vildagliptin is a drug of choice in type II diabetes mellitus that suffers from limitations like short half-life with reduced bioavailability. To improve the therapeutic performance of vildagliptin, this study aimed to synthesize chitosan nanoparticles (NPs) loaded hydrogel by using biological polysaccharides like sodium alginate (SA) and chondroitin sulfate (CS). The NPs were prepared by ionic gelation method and various characterization tests like surface morphology, size and zeta potential, entrapment efficiency, and in-vitro drug release studies were performed.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!