Targeting bacterial biofilms via surface engineering of gold nanoparticles.

RSC Adv

Department of Anesthesiology, Mayo Clinic, 200 1 St SW, Rochester, MN 55905; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 1 St SW, Rochester, MN 55905.

Published: December 2015

Bacterial biofilms are associated with persistent infections that are resistant to conventional antibiotics and substantially complicate patient care. Surface engineered nanoparticles represent a novel, unconventional approach for disruption of biofilms and targeting of bacterial pathogens. Herein, we describe the role of surface charge of gold nanoparticles (AuNPs) on biofilm disruption and bactericidal activity towards and which are important ventilator associated pneumonia (VAP) pathogens. In addition, we study the toxicity of charged AuNPs on human bronchial epithelial cells. While 100% positively charged AuNP surface was uniformly toxic to both bacteria and epithelial cells, reducing the extent of positive charge on the AuNP surface at moderate concentrations prevented epithelial cell toxicity. Reducing surface charge was however also less effective in killing bacteria. Conversely, increasing AuNP concentration while maintaining a low level of positivity continued to be bactericidal and disrupt the bacterial biofilm and was less cytotoxic to epithelial cells. These initial studies suggest that modulation of AuNP surface charge could be used to balance effects on bacteria vs. airway cells in the context of VAP, but the therapeutic window in terms of concentration vs. surface positive charge may be limited. Additional factors such as hydrophobicity may need to be considered in order to design AuNPs with specific, beneficial effects on bacterial pathogens and their biofilms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748853PMC
http://dx.doi.org/10.1039/C5RA16305FDOI Listing

Publication Analysis

Top Keywords

surface charge
12
epithelial cells
12
aunp surface
12
targeting bacterial
8
bacterial biofilms
8
surface
8
gold nanoparticles
8
bacterial pathogens
8
positive charge
8
charge
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!