Tropical grasses fuel the majority of fires on Earth. In fire-prone landscapes, enhanced flammability may be adaptive for grasses via the maintenance of an open canopy and an increase in spatiotemporal opportunities for recruitment and regeneration. In addition, by burning intensely but briefly, high flammability may protect resprouting buds from lethal temperatures. Despite these potential benefits of high flammability to fire-prone grasses, variation in flammability among grass species, and how trait differences underpin this variation, remains unknown.By burning leaves and plant parts, we experimentally determined how five plant traits (biomass quantity, biomass density, biomass moisture content, leaf surface-area-to-volume ratio and leaf effective heat of combustion) combined to determine the three components of flammability (ignitability, sustainability and combustibility) at the leaf and plant scales in 25 grass species of fire-prone South African grasslands at a time of peak fire occurrence. The influence of evolutionary history on flammability was assessed based on a phylogeny built here for the study species.Grass species differed significantly in all components of flammability. Accounting for evolutionary history helped to explain patterns in leaf-scale combustibility and sustainability. The five measured plant traits predicted components of flammability, particularly leaf ignitability and plant combustibility in which 70% and 58% of variation, respectively, could be explained by a combination of the traits. Total above-ground biomass was a key driver of combustibility and sustainability with high biomass species burning more intensely and for longer, and producing the highest predicted fire spread rates. Moisture content was the main influence on ignitability, where species with higher moisture contents took longer to ignite and once alight burnt at a slower rate. Biomass density, leaf surface-area-to-volume ratio and leaf effective heat of combustion were weaker predictors of flammability components. . We demonstrate that grass flammability is predicted from easily measurable plant functional traits and is influenced by evolutionary history with some components showing phylogenetic signal. Grasses are not homogenous fuels to fire. Rather, species differ in functional traits that in turn demonstrably influence flammability. This diversity is consistent with the idea that flammability may be an adaptive trait for grasses of fire-prone ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738432 | PMC |
http://dx.doi.org/10.1111/1365-2745.12503 | DOI Listing |
Commun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFSci Rep
January 2025
Asian Development Bank Institute, Research, Tokyo, 100-6008, Japan.
Global food production predominantly depends on a limited number of cereal crops; however, numerous other crops have the potential to support the nutrition and economy of many local communities in developing countries. The different crop species characterized as having relatively low perceived economic importance or agricultural significance are known as underutilized crops. Millet is one of the underutilized crops with significant potential to address nutrient and hunger-related challenges in many developing countries like Nepal due to its versatility and climate resilience.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address:
Chinese yam polysaccharide (CYP) is an effective immunostimulant, however, its efficacy in grass carp, an important commercial fish species in Asia, remains untested. Here, our study evaluated the immunostimulatory effects of CYP on IgM B cells in vitro and on humoral immunity and immune defense against Aeromonas hydrophila infection in vivo. In vitro stimulation experiments showed that CYP could induce the secretion of IgM antibodies, because it could stimulate the proliferation and differentiation of head kidney IgM B cells.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Semioquímicos, Brasília, DF, 70297-400, Brazil.
The small black stem bug, Paratibraca (= Glyphepomis) spinosa (Campos and Grazia 1998), is a rice pest in Brazil and is part of a complex of stink bugs that includes Oebalus poecilus (Dallas) and Tibraca limbativentris Stål. Together, these pentatomid species pose a serious threat to rice crops throughout South America. In this study, we identified the sex pheromone of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!