Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis.

Carbohydr Polym

The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Published: April 2016

Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome. By RT-PCR analysis, we confirmed that synthases genes transcripted an integral mRNA chain, suggesting co-expression. In shaken flask, chondroitin and heparosan were produced at a level of 1.83gL(-1) and 1.71gL(-1), respectively. Since B. subtilis endogenous tuaD gene encodes the limiting factor of biosynthesis, overexpressing tuaD resulted in enhanced chondroitin and heparosan titers, namely 2.54gL(-1) and 2.65gL(-1). Moreover, production reached the highest peaks of 5.22gL(-1) and 5.82gL(-1) in 3-L fed-batch fermentation, respectively, allowed to double the production that in shaken flask. The weight-average molecular weight of chondroitin and heparosan from B. subtilis E168C/pP43-D and E168H/pP43-D were 114.07 and 67.70kDa, respectively. This work provided alternative safer synthetic pathways for metabolic engineering of chondroitin and heparosan in B. subtilis and a useful approach for enhancing production, which can be optimized for further improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.12.065DOI Listing

Publication Analysis

Top Keywords

chondroitin heparosan
28
chondroitin
8
bacillus subtilis
8
synthetic pathways
8
synthases genes
8
shaken flask
8
heparosan subtilis
8
heparosan
7
subtilis
6
efficient biosynthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!