2,5-Diphenyl-3,4-dicyanothiophene (1) and phthalonitrile (2) were mixed and treated with ruthenium (III) trichloride, 4-methylpyridine, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 2-ethoxyethanol at 135°C, to produce low-symmetrical tetraazaporphyrins (TAPs) (3), (4), (5), and (6) with one to three thiophene rings. Two thiophene-annelated tetraazaporphyrins were isolated as opposite and adjacent isomers 4 and 5. The structure of 3 was determined by X-ray crystallography, showing that the thiophene ring linked at the 3,4-positions on the tetraazaporphyrin scaffold deviates from the mean plane of the four central pyrrole nitrogen atoms (N1-N3-N5-N7). Optical and electrochemical properties of the products were examined by UV-vis and magnetic circular dichroism (MCD) spectroscopy, together with cyclic voltammetry. In the (1)H NMR spectra, the signals of 4-methylpyridine coordinating to the central ruthenium atom appeared at a higher magnetic field than those of uncoordinated 4-methylpyridine itself due to the shielding effect of the TAP ring. Increasing the number of fused thiophene rings resulted in 1) lower magnetic field shifts of the signals of axially coordinated 4-methylpyridine in the (1)H NMR spectra, 2) lower energy shifts of the Q band absorption in the UV-vis spectra, and 3) decreasing (cathodic shift) of the first oxidation potentials. The structures of simplified model compounds were optimized using the DFT method with the Gaussian 09 program at the B3LYP/LANL2DZ level for the Ru atom and the B3LYP/6-31G (d, p) level for the C, H, N, and S atoms. The optimized structures were utilized to calculate the NMR shielding constants, the HOMO and LUMO orbital energies, and the electronic absorption spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2016.01.010 | DOI Listing |
ACS Nano
January 2025
Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston, University of Houston, Houston, Texas 77204, United States.
Magnesium batteries offer a safer alternative for next-generation battery technology due to their insusceptibility to dendrite deposition. Selective membranes tailored for magnesium-ion conduction will unlock further technological advancement. Herein, we demonstrate fluorine-free magnesiated sulfonated poly(ether ether ketone) (Mg-SPEEK) selective membranes capable of facilitating magnesium-ion conduction while effectively rejecting soluble organic species.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India.
A series of 2,6-di(pyrazine-2-yl)pyridine (dppy) ligands - of varying substituents of different electronic nature (-NMe, -OMe,-Me, and -Cl) in the 4-position of the pyridine moiety has been designed and synthesized to study the binding behavior of the dppy ligands towards Bovine Serum Albumin (BSA), a low-cost serum albumin protein. The interaction between ligands and BSA has been studied using UV-Visible and fluorescence spectroscopy and molecular docking studies. The fluorescence of BSA was found to be quenched in the presence of all the ligands , in which ligand , having the most electron donating group NMe exhibits the maximum binding affinity towards BSA.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!