Over the past years, microRNAs (miRNAs) have emerged as crucial factors that regulate self-renewal and differentiation of embryonic stem cells (ESCs). Although much is known about their role in maintaining ESC pluripotency, the mechanisms by which they affect cell fate decisions remain poorly understood. By performing deep sequencing to profile miRNA expression in mouse ESCs (mESCs) and differentiated embryoid bodies (EBs), we identified four differentially expressed miRNAs. Among them, miR-191 and miR-16-1 are highly expressed in ESCs and repress Smad2, the most essential mediator of Activin-Nodal signaling, resulting in the inhibition of mesendoderm formation. miR-23a, which is also down-regulated in the differentiated state, suppresses differentiation toward the endoderm and ectoderm lineages. We further identified miR-421 as a differentiation-associated regulator through the direct repression of the core pluripotency transcription factor Oct4 and the bone morphogenetic protein (BMP)-signaling components, Smad5 and Id2. Collectively, our findings uncover a regulatory network between the studied miRNAs and both branches of TGF-β/BMP-signaling pathways, revealing their importance for ESC lineage decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788761 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2016.01.004 | DOI Listing |
Epigenetics Chromatin
January 2025
Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361, Bron, F-69500, France.
Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.
View Article and Find Full Text PDFNPJ Regen Med
January 2025
Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, USA.
Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China. Electronic address:
Poult Sci
January 2025
College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China. Electronic address:
This study investigates the role of histone acetylation in the differentiation of chicken embryonic stem cells (ESCs) into primordial germ cells (PGCs). Transcriptomic sequencing was used to analyze differentially expressed genes during this differentiation process, with functional annotation identifying genes associated with histone acetylation. To explore the role of acetylation, acetate and an acetyltransferase inhibitor (ANAC) were added to the ESCs induction medium.
View Article and Find Full Text PDFStem Cell Res
December 2024
Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:
Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!