Thioredoxins are nearly ubiquitous disulfide reductases involved in a wide range of biochemical pathways in various biological systems, and also implicated in numerous biotechnological applications. Plants uniquely synthesize an array of thioredoxins targeted to different cell compartments, for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses on occurrence, reaction mechanisms, specificity, target protein identification, three-dimensional structure and various applications. The aim is to provide a general background as well as an update covering the most recent findings. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2016.02.014 | DOI Listing |
Free Radic Biol Med
December 2024
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Hengyang Medical School, University of South China, Hengyang 421001, China. Electronic address:
Heavy ion radiotherapy is an effective treatment for tumors, but its therapeutic efficacy is limited in cancer cells with radiation resistance. Deinococcus radiodurans, well known for its extremely resisting various stresses, was used to explore radioresistant mechanism. We used quantitative redox proteomics to track the dynamic changes in the global redox state after C irradiation.
View Article and Find Full Text PDFJ Plant Res
December 2024
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
Thiol/disulfide-based redox regulation is a key mechanism for modulating protein functions in response to changes in cellular redox status. Two thioredoxin (Trx)-like proteins [atypical Cys His-rich Trx (ACHT) and Trx-like2 (TrxL2)] have been identified as crucial for oxidizing and deactivating several chloroplast enzymes during light-to-dark transitions; however, their roles remain to be fully understood. In this study, we investigated the functions of Trx-like proteins in seed development.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China. Electronic address:
Background: Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of Psoralea corylifolia Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear.
Methods: Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model.
Plant Sci
January 2025
National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil. Electronic address:
A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Plant extracellular vesicles are non-self-replicating particles released by living plant cells and delimited by a lipid bilayer. They contain a large amount of lipids, RNA, and proteins. Seed vigor plays an important role in agricultural production and preservation of germplasm resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!