Biosynthesis of Fluorescent Bi2S3 Nanoparticles and their Application as Dual-Function SPECT-CT Probe for Animal Imaging.

Curr Top Med Chem

Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008 (M.S), India.

Published: February 2017

Bismuth sulphide (Bi2S3) is an excellent semiconductor and its nanoparticles have numerous significant applications including photovoltaic materials, photodiode arrays, bio-imaging, etc. Nevertheless, these nanoparticles when fabricated by chemical and physical routes tend to easily aggregate in colloidal solutions, are eco-unfriendly, cumbrous and very broad in size distribution. The aim of the present manuscript was to ecologically fabricate water dispersible, safe and stable Bi2S3 nanoparticles such that these may find use in animal imaging, diagnostics, cell labeling and other biomedical applications. Herein, we for the first time have biosynthesized highly fluorescent, natural protein capped Bi2S3 nanoparticles by subjecting the fungus Fusarium oxysporum to bismuth nitrate pentahydrate [Bi(NO3)3.5H2O] alongwith sodium sulphite (Na2SO3) as precursor salts under ambient conditions of temperature, pressure and pH. The nanoparticles were completely characterized using recognized standard techniques. These natural protein capped Bi2S3 nanoparticles are quasi-spherical in shape with an average particle size of 15 nm, maintain long term stability and show semiconductor behavior having blue shift with a band gap of 3.04 eV. Semiconductor nanocrystals are fundamentally much more fluorescent than the toxic fluorescent chemical compounds (fluorophores) which are presently largely employed in imaging, immunohistochemistry, biochemistry, etc. Biologically fabricated fluorescent nanoparticles may replace organic fluorophores and aid in rapid development of biomedical nanotechnology. Thus, biodistribution study of the so-formed Bi2S3 nanoparticles in male Sprague Dawley rats was done by radiolabelling with Technitium-99m (Tc-99m) and clearance time from blood was calculated. The nanoparticles were then employed in SPECT-CT probe for animal imaging where these imparted iodine equivalent contrast.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026616666160215155347DOI Listing

Publication Analysis

Top Keywords

bi2s3 nanoparticles
20
animal imaging
12
nanoparticles
10
spect-ct probe
8
probe animal
8
natural protein
8
protein capped
8
capped bi2s3
8
bi2s3
6
biosynthesis fluorescent
4

Similar Publications

Ultrasonic treatment-assisted reductive deposition of Cu and Pd nanoparticles on ultrathin 2D BiS nanosheets for selective electrochemical reduction of CO into C compounds.

Ultrason Sonochem

December 2024

Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates. Electronic address:

In this work, we have ultrasonically deposited Cu and Pd nanoparticles on BiS nanoparticles, prepared using an ultrasonication assisted hydrothermal method. We implemented intense ultrasonic waves bearing frequency of 20 kHz and power of 750 W at the acoustic wavelength of 100 mm to reduce Cu and Pd nanoparticles on the BiS surface. The XRD confirmed the formation of highly crystalline BiS nanoparticles with a pure orthorhombic phase and the deposition of copper (Cu) and palladium (Pd) nanoparticles was indicated by the strengthening and broadening of the peaks.

View Article and Find Full Text PDF

A Polypeptosome Spray To Heal Antibiotic-Resistant Bacteria-Infected Wound by Photocatalysis-Induced Metabolism-Interference.

ACS Nano

December 2024

Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.

With the booming antimicrobial drug resistance worldwide, traditional antibacterial agents (e.g., antibiotics) are usually powerless against superbug.

View Article and Find Full Text PDF

The advancement and utilization of nano-scale biomaterials in the diagnosis and treatment of tumors have been notable over the last few decades, primarily owing to their appealing characteristics such as small particle size, adjustable properties, and remarkable biocompatibility. The creation of nanomaterials possessing versatility and a customizable nature, consequently, holds great promise for advancing healthcare and improving patient outcomes. Here, we report the controllable synthesis of monodisperse bismuth-based (BiS, Bi, and BiO) nanoparticles with uniform spherical morphology and size distribution, and evaluate their potential for CT imaging and photothermal therapy applications.

View Article and Find Full Text PDF
Article Synopsis
  • Au nanoparticles (NPs) enhance the field electron emission (FEE) performance of BiS nanorods (NRs), lowering the turn-on field from 3.7 to 2.7 V/μm and increasing maximum emission current density from 138 to 604.8 μA/cm.
  • The BiS nanorods, around 120 nm in diameter, form nanoflowers, while 5-10 nm Au NPs are uniformly attached to their surfaces, creating an Au/BiS composite.
  • This improvement in FEE is due to reduced work function and more emitting sites provided by the decoration of Au NPs, as confirmed by various analysis techniques like FESEM/TEM, XRD,
View Article and Find Full Text PDF

In the present study, a green, scalable, and environmentally friendly approach was developed for the fabrication of BiS-decorated CdS nanoparticles with an efficient hydrogen generation ability from the water. As a sulfur source, thiourea was used. The process was completed in two stages: mechanical activation and thermal annealing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!