Exposures of the skin with electromagnetic radiation of wavelengths between 670 nm and 1400 nm are often used as a general treatment to improve wound healing and reduce pain, for example, in chronic diabetic skin lesions. We investigated the effects of water-filtered infrared A (wIRA) and of narrow-band IR-A provided by a light-emitting diode LED (LED-IR-A) irradiation in vitro on 3T3 fibroblast cultures under defined conditions with and without glyoxal administration. Glyoxal triggers the formation of advanced glycation end products, thereby mimicking a diabetic metabolic state. Cell viability and apoptotic changes were determined by flow cytometry after vital staining with Annexin V, YO-PRO-1 and propidium iodide (PI), and by SubG1 assay. Mitochondrial function and oxidative stress were examined by vital staining for radical production, mitochondrial membrane potential (MMP) and the ratio of reduced-to-oxidized glutathione (GSH/GSSG). The metabolic state was monitored by a resazurin conversion assay. The numbers of apoptotic cells were reduced in cultures irradiated with wIRA or LED-IR-A. More mitochondria showed a well-polarized MMP after wIRA irradiation in glyoxal damaged cells. LED-IR-A treatment specifically restored the GSH/GSSG ratio. The immediate positive effects of wIRA and LED-IR-A observed in living cells, particularly on mitochondria, reflect the therapeutic benefits of wIRA and LED-IR-A.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12579DOI Listing

Publication Analysis

Top Keywords

wira led-ir-a
12
narrow-band ir-a
8
water-filtered infrared
8
metabolic state
8
vital staining
8
wira
5
led-ir-a
5
effects narrow-band
4
ir-a water-filtered
4
infrared fibroblasts
4

Similar Publications

Exposures of the skin with electromagnetic radiation of wavelengths between 670 nm and 1400 nm are often used as a general treatment to improve wound healing and reduce pain, for example, in chronic diabetic skin lesions. We investigated the effects of water-filtered infrared A (wIRA) and of narrow-band IR-A provided by a light-emitting diode LED (LED-IR-A) irradiation in vitro on 3T3 fibroblast cultures under defined conditions with and without glyoxal administration. Glyoxal triggers the formation of advanced glycation end products, thereby mimicking a diabetic metabolic state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!