Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation.

Cell Rep

Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA. Electronic address:

Published: February 2016

A hallmark of cardiac development is the formation of myocardial trabeculations exclusively from the luminal surface of the primitive heart tube. Although a number of genetic defects in the endocardium and cardiac jelly disrupt myocardial trabeculation, the role of cell polarization remains unclear. Here, we demonstrate that atypical protein kinase C iota (Prkci) and its interacting partners are localized primarily to the luminal side of myocardial cells of early murine embryonic hearts. A subset of these cells undergoes polarized cell division with the cell division plane perpendicular to the heart's lumen. Disruption of the cell polarity complex by targeted gene mutations results in aberrant mitotic spindle alignment, loss of polarized cardiomyocyte division, and loss of normal myocardial trabeculation. Collectively, these results suggest that, in response to inductive signals, Prkci and its downstream partners direct polarized cell division of luminal myocardial cells to drive trabeculation in the nascent heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600190PMC
http://dx.doi.org/10.1016/j.celrep.2016.01.030DOI Listing

Publication Analysis

Top Keywords

cell division
16
polarized cell
12
myocardial trabeculation
12
atypical protein
8
protein kinase
8
myocardial cells
8
cell
6
division
5
myocardial
5
kinase c-dependent
4

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies.

Discov Oncol

January 2025

Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.

The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.

View Article and Find Full Text PDF

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!