Role of C-N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route.

Sci Rep

Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.

Published: February 2016

Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs' C-N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C-N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753454PMC
http://dx.doi.org/10.1038/srep21042DOI Listing

Publication Analysis

Top Keywords

c-n configurations
12
configurations photoluminescence
8
graphene quantum
8
quantum dots
8
role c-n
4
photoluminescence graphene
4
dots synthesized
4
synthesized hydrothermal
4
hydrothermal route
4
route graphene
4

Similar Publications

Pivotal role of exogenous pyruvate in human natural killer cell metabolism.

Nat Metab

January 2025

CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.

Resting natural killer (NK) cells display immediate effector functions after recognizing transformed or infected cells. The environmental nutrients and metabolic requirements to sustain these functions are not fully understood. Here, we show that NK cells rely on the use of extracellular pyruvate to support effector functions, signal transduction and cell viability.

View Article and Find Full Text PDF

The title di-thio-carbazate imine, CHNOS, was obtained from the condensation reaction of -methyl-dithio-carbazate (SMDTC) and 5-methyl-isatin. It shows a configuration about the imine C=N bond, which is associated with an intra-molecular N-H⋯O hydrogen bond that closes an (6) ring. In the crystal, inversion dimers linked by pairwise N-H⋯O hydrogen bonds generate (8) loops.

View Article and Find Full Text PDF

Wastewater treatment processes are continually evolving to meet stringent environmental standards while optimizing energy consumption and operational costs. With significant advantages over more traditional approaches, the anammox process has become a hopeful substitute for nitrogen removal. The objective of this work was to evaluate upflow anaerobic sludge blanket reactor (UASBR), moving bed biofilm reactor (MBBR), and sequential batch reactor (SBR) among diverse reactor configurations, in culturing anammox bacteria and achieving nitrogen removal efficiencies.

View Article and Find Full Text PDF

Solids retention time modulates nutrient removal in pilot-scale anaerobic-aerobic-anoxic process: Carbon allocation patterns and microbial insights.

Water Res

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

Anaerobic-aerobic-anoxic (AOA) process is a promising configuration to retrofit current wastewater treatment plants with intensified carbon utilization and nutrient removal, but lacks process optimization for scaling-up in real wastewater scenarios. Solids retention time (SRT) is a fundamental parameter of activated sludge process, but its roles in the AOA process remain vague. Here, we established a pilot-scale AOA process at different SRTs (10, 20, 30 d) to investigate the comprehensive responses and potential mechanisms.

View Article and Find Full Text PDF

1,2--Aryl furanosides are prevalent in nature and exhibit significant biological activities. The 1,2- configuration is less favorable in terms of stereoelectronic and steric effects, making the synthesis of this type of skeleton highly challenging. Traditional methods for the synthesis of 1,2--aryl furanosides usually require complicated protection manipulations, resulting in lengthy synthetic routes and low overall efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!