A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET's drain current during DNA translocation through the nanopore.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/11/115501DOI Listing

Publication Analysis

Top Keywords

side-gated ultrathin-channel
8
ultrathin-channel nanopore
8
nanopore fet
8
current dna
8
dna translocation
8
translocation nanopore
8
nanopore
5
fet sensors
4
sensors side-gated
4
fet sgnafet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!