Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction-denaturing gradient gel electrophoresis, amplicon sequencing of the 16S rRNA gene and culturing. Three consortia were constructed using the microbiota of lake sediment as the starting inoculum and untreated switchgrass (Panicum virgatum) (acid or heat) or treated (with either acid or heat) as the sole source of carbonaceous compounds. Additionally, nitrate was used in order to limit sulfate reduction and methanogenesis. Bacterial growth took place, as evidenced from 3 to 4 log unit increases in the 16S rRNA gene copy numbers as well as direct cell counts through three transfers on cleaned and reused substrate placed in fresh mineral medium. After 2 days, Aeromonas bestiarum-like organisms dominated the enrichments, irrespective of the substrate type. One month later, each substrate revealed major enrichments of organisms affiliated with different species of Clostridium. Moreover, only the heat-treated substrate selected Dysgonomonas capnocytophagoides-affiliated bacteria (Bacteroidetes). Towards the end of the experiment, members of the Proteobacteria (Aeromonas, Rhizobium and/or Serratia) became dominant in all three types of substrates. A total of 160 strains was isolated from the enrichments. Most of the strains tested (78%) were able to grow anaerobically on carboxymethyl cellulose and xylan. The final consortia yield attractive biological tools for the depolymerization of recalcitrant lignocellulosic materials and are proposed for the production of precursors of biofuels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767288 | PMC |
http://dx.doi.org/10.1111/1751-7915.12338 | DOI Listing |
Sci Total Environ
January 2025
School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China. Electronic address:
This study comprehensively investigated the Cs signal in 294 sediment core samples from 132 lakes including reservoir and Gobi catchment in China. First, three Cs chrono-markers were observed: the 1963 peak corresponding to the maximum deposition of radioactive debris from global fallout, and two local sub-peaks corresponding to the time of the nuclear tests at Chinese Lop Nor site with a maximum in 1976, and to the Chernobyl accident in 1986. Second, the spatial distribution of sedimentation rates based on the 1963 Cs chrono-marker in Chinese lake sediment cores was studied.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China. Electronic address:
To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China.
Erhai Lake, a vital drinking water source for Dali, a highland agricultural city, faces potential contamination from pesticide residues, yet limited studies have assessed their distribution and impacts. This study investigates the occurrence, transport, partitioning, and ecological risks of pesticides in the lake's dissolved phase (DP), suspended particulate matter (SPM), and sediment (SD) samples collected from 22 sites across different seasons. The results showed significant temporal variations across different media, with spatial variations driven by crop-related patterns.
View Article and Find Full Text PDFGround Water
January 2025
Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China.
Wetlands, as crucial terrestrial carbon reservoirs, have recently suffered severe degradation due to intense human activities. Lacustrine sediments serve as vital indicators for understanding wetland environmental changes. In the current paper, porewater samples were extracted from lacustrine sediment in three boreholes with a depth of ~75 cm in the Huixian karst wetland, southwest China, to study the chemical and dissolved inorganic carbon (DIC) evolution under anthropogenic influence.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.
Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!