β-Carotene Increases Muscle Mass and Hypertrophy in the Soleus Muscle in Mice.

J Nutr Sci Vitaminol (Tokyo)

Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University.

Published: November 2016

Supplements and naturally occurring nutraceuticals effective for maintenance or enhancement of skeletal muscle mass are expected to contribute to prevention of decreased mobility and increased risk of developing metabolic diseases. However, information about available food components remains widely unavailable. In the present study, we investigated the effects of dietary β-carotene on the quantity and quality of skeletal muscle under physiological conditions. Male ddY mice (8 wk old) were orally administered β-carotene (0.5 mg once daily) for 14 d. Dietary β-carotene had no influence on body weight, but increased the soleus muscle/body weight ratio. The cross-sectional area (CSA) in muscle fibers of the soleus muscle was increased, indicating that administration of β-carotene induces muscle hypertrophy. In the soleus muscle of the β-carotene-administered mice, twitch force tended to be increased (p=0.06) and tetanic force was significantly increased, whereas specific force (force per CSA) remained unchanged. Dietary β-carotene increased the mRNA level of insulin-like growth factor 1 (Igf-1) as its splicing variant Igf-1ea, but had no influence on the liver Igf-1 mRNA level or serum IGF-1 level. β-Carotene promoted protein synthesis in the soleus muscle and reduced levels of ubiquitin conjugates, but had no influence on the mRNA levels of two atrogenes, Atrogin-1 and Murf1. On the other hand, β-carotene had no influence on the processing of the autophagy marker protein light chain 3. These results indicate that in mice, administration of β-carotene increases mass and induces functional hypertrophy in the soleus muscle, perhaps by promoting IGF-1-mediated protein synthesis and by reducing ubiquitin-mediated protein degradation.

Download full-text PDF

Source
http://dx.doi.org/10.3177/jnsv.61.481DOI Listing

Publication Analysis

Top Keywords

soleus muscle
20
hypertrophy soleus
12
dietary β-carotene
12
muscle
10
β-carotene
9
β-carotene increases
8
muscle mass
8
skeletal muscle
8
β-carotene influence
8
administration β-carotene
8

Similar Publications

expression in skeletal muscle in relationship with insulin sensitivity in normal-weight and obese volunteers.

J Diabetes Metab Disord

June 2025

Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Żurawia 71A, Białystok, 15-540 Poland.

Objectives: Retinoid X receptors (RXRs) are nuclear hormone receptors (NRs) functioning as transcription factors. There are three RXR isoforms: RXRA (NR2B1), RXRB (NR2B2), and RXRG (NR2B3). RXRs serve as master regulators of gene networks governing cell growth, differentiation, survival, and death.

View Article and Find Full Text PDF

Hydatidosis is an infection caused by the helminth . The liver and lungs are the most frequently affected organs, primarily due to their roles in filtering blood. Primary hydatidosis of the skeletal muscles is an exceedingly rare condition, often asymptomatic, which can lead to its misdiagnosis as a more common soft tissue tumour.

View Article and Find Full Text PDF

Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.

View Article and Find Full Text PDF

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the influence of multifidus muscle fat infiltration on clinical outcomes in lumbar disc herniation (LDH) undergoing percutaneous endoscopic lumbar discectomy (PELD).

Methods: A retrospective analysis was conducted on 224 patients who underwent lateral PELD, with complete one-year follow-up data. Patients were divided into two groups based on preoperative MRI evaluation of L4 multifidus muscle fat infiltration: a mild group (< 25%) and a severe group (≥ 25%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!