Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease. It leads to irreversible joint damage, physical handicap, and reduced life expectancy. The past two decades have seen considerable therapeutic advances with the development of biologic treatments to block proinflammatory cytokines or modulate lymphocyte function, followed by the development of small molecules to target intracellular signaling. Nevertheless, only a minority of patients can achieve disease remission, especially long term, warranting further investigation into newer therapeutic options. Targeting single proinflammatory pathways may not be sufficient, as suggested by variable results with T helper (Th)-17-related cytokine blockade. Multilevel information from 'omics' techniques along with data from mechanistic studies might facilitate the identification of pivotal checkpoints in RA disease pathogenesis and the subsequent development of new effective treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molmed.2016.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!