Purpose: Selection of the most appropriate chemotherapy dosing regimens for neonates treated within the first weeks of life represents a significant clinical dilemma. Due to a lack of information relating to the clinical pharmacology of anticancer drugs in these challenging patients, current dosing guidelines are based on limited scientific rationale. In the current study, we investigate the utilisation of therapeutic drug monitoring approaches in neonates with localised hepatoblastoma, Wilms' tumour and stage 4S neuroblastoma, being treated with widely used anticancer drugs.
Methods: Plasma concentrations of cisplatin, vincristine, etoposide and carboplatin were quantified in two neonates being treated within the first 3 weeks of life and in a 32-week preterm infant treated at a gestational age of 40 weeks. Therapeutic drug monitoring was carried out where appropriate, based on the pharmacokinetic data obtained in conjunction with clinical response and toxicity.
Results: Treatment of a child aged 2 weeks with a recommended cisplatin dose reduction for weight to 1.8 mg/kg resulted in achievement of unbound cisplatin plasma concentrations of 0.01-0.08 µg/mL, markedly lower than exposures previously reported in infants and older children. A dose increase to 2.7 mg/kg was implemented, leading to the achievement of levels more in-line with those previously reported. This increased dose level was well tolerated over six courses of treatment, resulting in a good response to cisplatin monotherapy and the patient remains in remission at 3.5 years. In contrast, a 50 % vincristine dose reduction for weight in a 3-week-old neonate resulted in plasma concentrations comparable to levels observed in older children, leading to successful treatment and continued remission at 2 years. In a third patient, etoposide and carboplatin clearance values normalised to body weight were comparable to those reported in older children, resulting in comparatively lower exposures following reduced dosing.
Conclusions: The current report provides unique data on the pharmacokinetics of several widely used anticancer drugs in neonates treated within the first few weeks of life. The provision of these data acts as a useful reference point to support future dosing decisions to be made by clinicians in the treatment of these challenging patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819938 | PMC |
http://dx.doi.org/10.1007/s00280-016-2975-0 | DOI Listing |
J Control Release
December 2024
Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:
Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
December 2024
Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China. Electronic address:
During tumour progression, organelle function undergoes dramatic changes, and crosstalk among organelles plays a significant role. Crosstalk between mitochondria and other organelles such as the endoplasmic reticulum and cytoskeleton has focussed attention on the mechanisms of tumourigenesis. This review demonstrates an overview of the molecular structure of the mitochondrial-cytoskeletal junction and its biological interactions.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China. Electronic address:
X-ray repair cross-complementing 2 (XRCC2), a critical protein in homologous recombination (HR), plays a significant role in the occurrence, progression, and drug resistance of colorectal cancer (CRC). In this study, a series of xanthohumol C derivatives were synthesized, and their anticancer activity was evaluated. The results revealed that A33 demonstrated the potent anticancer activity and effectively inhibited the proliferation of CRC cells in vitro.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!