A strategy based on water-in-oil emulsion for the dispersion of a sol-gel mixture into small droplets was employed with the view of the production of naproxen-imprinted micro- and nanospheres. The procedure, aiming at a surface imprinting process, comprised the synthesis of a naproxen-derived surfactant. The imprinting process occurred at the interface of the emulsions or microemulsions, by the migration of the NAP-surfactant head into the sol-gel drops to leave surficial imprints due mainly to ion-pair interaction with a cationic group contained within the growing sol-gel network. The surface-imprinted microspheric particles exhibited a log-normal size distribution with geometric mean diameter of 3.1μm. A mesoporous texture was found from measurements of the specific surface area (206m(2)/g) and pore diameter (Dp 2nm). Evaluation of the microspheres as packed HPLC stationary phases resulted in the determination of the selectivity factor against ibuprofen (α=2.1), demonstrating the successful imprinting. Chromatographic efficiency, evaluated by the number of theoretical plates (222platescm(-3)), emerged as an outstanding feature among the set of all relatable formats produced before, an advantage intrinsic to the location of the imprinted sites on the surface. The material presented a capacity of 3.2μmolg(-1). Additionally, exploratory work conducted on their nanoscale counterparts resulted in the production of nanospheres in the size order of 10nm providing good indications of a successful imprinting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2016.01.074 | DOI Listing |
Polymers (Basel)
January 2025
Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi 830017, China.
Lead (Pb) is classified as a prevalent metallic pollutant, significantly impacting the ecological environment, especially human health. Consequently, it is crucial to develop adsorbent materials that are environmentally friendly, cost-effective, and which possess high selectivity. This study aims to fabricate a Pb(II)-imprinted acrylonitrile-co-acrylic acid composite material by using modified sand particles as the carrier, and then to investigate its properties.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
Tetraspanin 32 (TSPAN32), a member of the tetraspanin superfamily, is one of several tumor-suppressing subtransferable fragments located in the imprinted gene domain of chromosome 11p15.5, a critical tumor-suppressor gene region. Although the biology of TSPAN32 remains largely unexplored, accumulating evidence suggests its involvement in hematopoietic functions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).
View Article and Find Full Text PDFSmall Methods
January 2025
Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.
Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!