In the atmosphere, a dominant loss process for carbonyl oxide intermediates produced from alkene ozonolysis is also an important source of hydroxyl radicals. The rate of appearance of OH radicals is revealed through direct time-domain measurements following vibrational activation of prototypical methyl-substituted Criegee intermediates under collision-free conditions. Complementary theoretical calculations predict the unimolecular decay rate for the Criegee intermediates in the vicinity of the barrier for 1,4 hydrogen transfer that leads to OH products. Both experiment and theory yield unimolecular decay rates of ca. 10(8) and 10(7) s(-1) for syn-CH3CHOO and (CH3)2COO, respectively, at energies near the barrier. Tunneling through the barrier, computed from high level electronic structure theory and experimentally validated, makes a significant contribution to the decay rate. Extension to thermally averaged unimolecular decay of stabilized Criegee intermediates under atmospheric conditions yields rates that are six orders of magnitude slower than those evaluated directly in the barrier region.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4941768DOI Listing

Publication Analysis

Top Keywords

unimolecular decay
16
criegee intermediates
16
decay rate
8
decay
5
intermediates
5
communication real
4
real time
4
time observation
4
unimolecular
4
observation unimolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!