Background: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies.

Method: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing.

Results: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI.

Conclusion: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2016.02.013DOI Listing

Publication Analysis

Top Keywords

formulated adjuvants
12
plasmodium falciparum
8
msp2
8
falciparum msp2
8
strains adjuvants
8
compared alhydrogel
8
adjuvants
5
immunogenicity dimorphic
4
dimorphic c-terminal
4
c-terminal fragments
4

Similar Publications

BCG remains the only licensed vaccine for tuberculosis (TB), but its efficacy wanes over time. Subunit vaccines, aim to improve BCG immunity and protection, by inducing responses to a few mycobacterial antigens delivered with a specific platform. Since the platform shapes the immune response induced, selecting the right platform has been challenging due to the lack of immune correlates of protection.

View Article and Find Full Text PDF

Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.

View Article and Find Full Text PDF

Purpose: Dimethyl fumarate (DMF), the first-line oral therapy for relapsing-remitting multiple sclerosis, is rapidly metabolized into monomethyl fumarate. The DMF oral administration provokes gastrointestinal discomfort causing treatment withdrawal. The present study aimed to develop an innovative formulation for DMF nasal administration.

View Article and Find Full Text PDF

Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.

Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.

View Article and Find Full Text PDF
Article Synopsis
  • There's an urgent need to boost the effectiveness of seasonal influenza vaccines, with recombinant hemagglutinin showing potential benefits over traditional methods.
  • In a study, two adjuvants (Advax-CpG55.2 and alum-CpG55.2) were tested to see if they could improve the immune response of a quadrivalent influenza vaccine (QIV) in mice.
  • Results showed that the adjuvanted vaccines led to much higher levels of protective antibodies and significantly reduced illness in mice infected with the H1N1 strain, suggesting that this approach could be a better alternative for seasonal flu vaccinations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!