Ionophores are the second top selling class of antimicrobials used in food-producing animals in the United States. In chickens, ionophores are used as feed additives to control coccidiosis; up to 80% of administered ionophores are excreted in the litter. Because poultry litter is commonly used to fertilize agricultural fields, ionophore residues in litter have become contaminants of emerging concern. This study aims to develop a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify ionophores, and identify their transformation products (TPs) in poultry litter after on-farm pilot-scale composting. The validation parameters of the optimized method showed good accuracy, ranging from 71 to 119% recovery and relative standard deviation (precision) of ≤19% at three different concentration levels (10, 50 and 100 μg/kg). Monensin, salinomycin and narasin, were detected in the poultry litter samples prior to composting at 290.0 ± 40, 426 ± 46, and 3113 ± 318 μg kg(-1), respectively. This study also aims to investigate the effect of different composting conditions on the removal of ionophores, such as the effect of turning or aeration. Results revealed a 13-68% reduction in ionophore concentrations after 150 d of composting, depending on whether the compost was aerated, turned, or subjected to a combination of both aeration and turning. Three transformation products and one metabolite of ionophores were identified in the composted litter using high-resolution liquid chromatography with quadrupole time-of-flight mass spectrometry (LC-QToF/MS).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2016.01.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!