The production of bioenergy from plant biomass previously relied on using microorganisms that rapidly and efficiently convert simple sugars into fuels and chemicals. However, to exploit the far more abundant carbon fixed in plant cell walls, future industrial production hosts will need to be engineered to leverage the most efficient biochemical pathways and most robust traits that can be found in nature. The CRISPR-Cas9 genome editing technology now enables writing the genome at will, which will allow biotechnology to become an 'information science.' This review covers recent advances in using CRISPR-Cas9 to engineer the genomes of a wide variety of organisms that could be use in the industrial production of biofuels and renewable chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2016.01.005 | DOI Listing |
BMC Vet Res
December 2024
Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
BMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!