MicroRNAs (miRNAs) have been identified as promising biomarkers in cancer and other diseases. Packaging of miRNAs into vesicles and complexes with proteins ensures their stability in biological fluids but also complicates their isolation. Conventional protocols used to isolate cell-free RNA are generally successful in overcoming these difficulties; however, they are costly, labor-intensive, or heavily reliant on the use of hazardous chemicals. Here we describe a protocol that is suitable for isolating miRNAs from biofluids, including blood plasma and urine. The protocol is based on precipitation of proteins, denaturation of miRNA-containing complexes with octanoic acid and guanidine isothiocyanate, and subsequent purification of miRNA on spin columns. The efficacy of miRNA extraction by phenol-chloroform extraction, miRCURY RNA isolation kit--biofluids (Exiqon), and the proposed protocol was compared by quantitative reverse-transcription PCR of miR-16 and miR-126. The proposed protocol was slightly more effective for isolating miRNA from plasma and significantly superior to the other two methods for miRNA isolation from urine. Spectrophotometry and SDS-PAGE data suggest that the disparity in performance between miRCURY Biofluids and the proposed protocol can be attributed to differences in precipitation mechanisms, as confirmed by the retention of different proteins in the supernatant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2016.01.025DOI Listing

Publication Analysis

Top Keywords

proposed protocol
12
mirna isolation
8
protocol
6
protocol mirna
4
isolation
4
isolation biofluids
4
biofluids micrornas
4
micrornas mirnas
4
mirnas identified
4
identified promising
4

Similar Publications

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.

Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.

View Article and Find Full Text PDF

Within-domain and across-domain compensation: a systematic review, integrative framework and future research agenda.

BMC Psychol

January 2025

School of Management, Jinan University, No.601, Huangpu Avenue West, Guangzhou, Guangdong Province, 510632, China.

Different from previous studies on the motives of compensatory consumption, this review focuses on the strategies of compensatory consumption. This literature review aims to introduce two main strategies for compensatory consumption, within-domain and across-domain compensation. Within-domain compensation is a consumption strategy to repair a self-discrepancy in a specific domain, while across-domain compensation refers to a consumption strategy that consumers restore their global self-worth by affirming themselves in other important domains yet unrelated to the self-discrepancies.

View Article and Find Full Text PDF

Deciphering SPP1-related macrophage signaling in the pathogenesis of intervertebral disc degeneration.

Cell Biol Toxicol

January 2025

Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.

This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models.

View Article and Find Full Text PDF

Management of Vascular Complications from Button Battery Ingestions.

Curr Gastroenterol Rep

January 2025

Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York- Presbyterian Morgan Stanley Children's Hospital, 630 West 168Th Street, New York, NY, PH17-105H10032, USA.

Purpose: To propose a gastrointestinal bleeding management algorithm that incorporates an endoscopic and imaging scoring system and specifies management of vascular complication from button battery ingestion.

Recent Findings: Button batteries (BB) are found in many electronic devices and ingestions are associated with serious complications especially in cases of unwitnessed ingestions, prolonged impaction, and in children less than 5 years of age. Gastrointestinal bleeding from BB related vascular injury is rare but often rapidly fatal, with a mortality rate as high as 81%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!