Fertilization Independent Endosperm genes repress NbGH3.6 and regulate the auxin level during shoot development in Nicotiana benthamiana.

J Exp Bot

State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China

Published: April 2016

The Fertilization Independent Endosperm (FIE) gene is required to restrict endosperm development without fertilization, and it represses flowering during embryo and seedling development in Arabidopsis thaliana However, the regulatory mechanism of the FIE gene in postembryonic shoot development is not well understood. Silencing of Nicotiana benthamiana homologues of the FIE gene, NbFIE1 and NbFIE2, resulted in the enhanced outgrowth of axillary buds and the impairment of secondary xylem differentiation. RNA sequencing analysis found that one of the auxin-responsive GRETCHEN HAGEN 3(GH3) family genes, NbGH3.6, was upregulated and maintained a high expression during the time course of silencing NbFIE genes. Chromatin immunoprecipiation (ChIP)-PCR results showed a lack of H3K27me3 marks on NbGH3.6 chromatin in NbFIE-silenced plants compared with negative control plants, indicating that NbGH3.6 was a direct target of NbFIE genes during postembryonic shoot development. Moreover, the free IAA content was reduced significantly in NbFIE-silenced plants, which might cause the enhanced outgrowth of axillary buds as well as impaired secondary xylem differentiation. These results clearly indicated that NbGH3.6 was a primary target of NbFIE genes during postembryonic shoot development, and NbFIE genes regulated axillary bud growth and secondary xylem formation through tuning endogenous auxin homeostasis, possibly by regulating the expression of the NbGH3.6 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809283PMC
http://dx.doi.org/10.1093/jxb/erw024DOI Listing

Publication Analysis

Top Keywords

shoot development
16
nbfie genes
16
fie gene
12
postembryonic shoot
12
secondary xylem
12
fertilization independent
8
independent endosperm
8
nicotiana benthamiana
8
enhanced outgrowth
8
outgrowth axillary
8

Similar Publications

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

The present study uncovers the impacts of pesticide-thiamethoxam (TMX- 750 mg L) and salicylic acid (SA- 0.01, 0.1 and 1 mM) in Brassica juncea L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!