One-Pot Conversion of N-Allyl-α-cyano Esters to α-Allyl-α-cyano Lactams through a Hydrolysis/Ketene Formation/Cyclization/Claisen Rearrangement Sequence.

Org Lett

School of Pharmaceutical Engineering and Life Science, Changzhou University, 1 Middle Gehu Road, Changzhou, Jiangsu Province 213164, China.

Published: March 2016

An intramolecular ketene aza-Claisen rearrangement is developed for the first time to enable the stereoselective synthesis of α-ally-α-cyano-lactams from N-allyl amino esters. This reaction also exhibits outstanding chemoselectivity when an unsymmetrical bis-N-allyl group is present in the starting molecule. The usefulness of this method is demonstrated by a short synthesis of optically active bicyclolactam from l-proline.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.5b02843DOI Listing

Publication Analysis

Top Keywords

one-pot conversion
4
conversion n-allyl-α-cyano
4
n-allyl-α-cyano esters
4
esters α-allyl-α-cyano
4
α-allyl-α-cyano lactams
4
lactams hydrolysis/ketene
4
hydrolysis/ketene formation/cyclization/claisen
4
formation/cyclization/claisen rearrangement
4
rearrangement sequence
4
sequence intramolecular
4

Similar Publications

Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Key Laboratory of Lightweight Composite, Shanghai Engineering Research Center of Nano Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China.

Flammability is a significant challenge in polymer-based electronics. In this regard, triboelectric nanogenerators (TENGs) have enabled a safe means for harvesting mechanical energy for conversion into electrical energy. However, most existing polymers used for TENGs are sourced from petroleum-based raw materials and are highly flammable, which can further accelerate the spread of fire and harm the ecological environment.

View Article and Find Full Text PDF

Developing cost-effective, non-precious metal bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for advancing sustainable energy storage and conversion technologies, including zinc-air batteries, fuel cells, and water electrolyzers. This study presents a one-pot synthesis of cobalt-manganese mixed phosphates as effective bifunctional electrocatalysts for both ORR and OER. Among the catalysts tested, Na-Co-Mn-P [NaCo1.

View Article and Find Full Text PDF

The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages.

View Article and Find Full Text PDF

In-situ Growth of Metallocluster inside Heterometal-organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction.

Angew Chem Int Ed Engl

December 2024

Northeast Normal University, Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Institute of Functional Material Chemistry, Local United Engineering Lab for Power Battery, CHINA.

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metalloclusters-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metalloclusters-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2- clusters was obtained by one-pot method.

View Article and Find Full Text PDF

Copper-based sulfides are attractive candidates for NIR I and II responsive photothermal therapy but often suffer from high hydrophobicity, suboptimal photothermal conversion, and poor biostability and biocompatibility. In the present work, a rapid, one-pot synthesis method was developed to obtain Au-doped CuS (ACSH NDs) dual plasmonic nanodots. ACSH NDs exhibit excellent peroxidase-like catalytic activity for pH-responsive OH radical generation along with efficient glutathione depletion under tumor microenvironment mimicking conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!