Osmosensing transporters mediate osmolyte accumulation to forestall cellular dehydration as the extracellular osmolality increases. ProP is a bacterial osmolyte-H(+) symporter, a major facilitator superfamily member, and a paradigm for osmosensing. ProP activity is a sigmoid function of the osmolality. It is determined by the osmolality, not the magnitude or direction of the osmotic shift, in cells and salt-loaded proteoliposomes. The activation threshold varies directly with the proportion of anionic phospholipid in cells and proteoliposomes. The osmosensory mechanism was probed by varying the salt composition and concentration outside and inside proteoliposomes. Data analysis was based on the hypothesis that the fraction of maximal transporter activity at a particular luminal salt concentration reflects the proportion of ProP molecules in an active conformation. ProP attained the same activity at the same osmolality when diverse, membrane-impermeant salts were added to the external medium. Contributions of Coulombic and/or Hofmeister salt effects to ProP activation were examined by varying the luminal salt cation (K(+) and Na(+)) and anion (chloride, phosphate, and sulfate) composition and then systematically increasing the luminal salt concentration by increasing the external osmolality. ProP activity increased with the sixth power of the univalent cation concentration, independent of the type of anion. This indicates that salt activation of ProP is a Coulombic, cation effect resulting from salt cation accumulation and not site-specific cation binding. Possible origins of this Coulombic effect include folding or assembly of anionic cytoplasmic ProP domains, an increase in local membrane surface charge density, and/or the juxtaposition of anionic protein and membrane surfaces during activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850843 | PMC |
http://dx.doi.org/10.1021/acs.biochem.5b01169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!