During chronic infection with Mycobacterium tuberculosis (Mtb), bacilli multiplication is constrained within lung granulomas until excessive inflammation destroys the lung. Neutrophils are recruited early and participate in granuloma formation, but excessive neutrophilia exacerbates the tuberculosis disease. Neutrophils thus appear as potential targets for therapeutic interventions, especially in patients for whom no antibiotic treatment is possible. Signals that regulate neutrophil recruitment to the lung during mycobacterial infection need to be better understood. We demonstrated here, in the mouse model, that neutrophils were recruited to the lung in two waves after intranasal infection with virulent Mtb or the live attenuated vaccine strain Bacillus Calmette Guérin (BCG). A first wave of neutrophils was swiftly recruited, followed by a subsequent adaptive wave that reached the lung together with IFN-γ- and IL-17A-producing T cells. Interestingly, the second neutrophil wave did not participate to mycobacteria control in the lung and established contacts with T cells. The adaptive wave was critically dependent on the expression of IL-17RA, the receptor for IL-17A, expressed in non-hematopoietic cells. In absence of this receptor, curtailed CXCL-1 and 5 production in the lung restrained neutrophil recruitment. CXCL-1 and 5 instillation reconstituted lung neutrophil recruitment in BCG-infected IL17RA-/- mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752258 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149455 | PLOS |
Unlabelled: The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury.
View Article and Find Full Text PDFRegen Biomater
December 2024
Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215006, P. R. China.
Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Background: PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored.
Methods: We analyzed PLK3 expression in glioma samples from multiple databases.
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China. Electronic address:
Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms.
View Article and Find Full Text PDFPharmaceutics
December 2024
Ningbo No. 2 Hospital, Ningbo 315099, China.
The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!