We perform molecular dynamics simulations of the orientational ordering on nematic shells delimited by spherocylindrical nanoscopic colloidal particles. We show that under conditions of degenerate planar anchoring, the equilibrium director field structure in these shells exhibits pairs of +1/2 topological defects at the poles of spherical cups in the absence of an external electric field. In addition, a certain number of pairs of ±1/2 defects occurs on the spherical cups far from the poles, thus resulting in a total of eight valence spots. A strong field applied along the main spherocylindrical axis removes the ±1/2 defect pairs while it coalesces the polar ones into a single +1 topological defect. A strong transverse field destroys all defects on the spherical cups but generates four +1/2 defects in the cylindrical part. Therefore, an external field can be used to control the number of valence centers in spherocylindrical nematic shells, thus unveiling their capability of acting as multivalent building blocks for nanophotonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.93.012703 | DOI Listing |
Liq Cryst
December 2023
Experimental Soft Matter Physics group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
Liquid crystal-forming cyanobiphenyls are truly extraordinary molecules that have had an enormous impact on liquid crystal research and applications since they were first synthesised. This impact is, on the one hand, due to the exceptionally convenient physical properties of the main characters, 5CB and 8CB, allowing easy experiments at room temperature, as well as their commercial availability at reasonable cost. On the other hand, the cyanobiphenyl chemical structure leads to some quite peculiar characteristics in terms of organisation at the molecular scale, which are sometimes well recognised and even utilised, but often the awareness of these peculiarities is not strong.
View Article and Find Full Text PDFPhys Rev E
September 2024
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 México, Ciudad de México, México.
The self-assembly of liquid crystal droplets and shells represents a captivating frontier in soft matter physics, promising precision engineering of functional materials. In this study, we delve into the phase behavior and investigate defect formation patterns in spherical shell-confined discotic liquid crystals (DLCs) through NpT Monte Carlo simulations. These shells are created by confining DLCs between two spherical surfaces, promoting the same anchoring.
View Article and Find Full Text PDFSmall
January 2025
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany.
Depending on their aspect ratio, rod-shaped particles exhibit a much richer 2D and 3D phase behavior than their spherical counterparts, with additional nematic and smectic phases accompanied by defined orientational ordering. While the phase diagram of colloidal hard rods is extensively explored, little is known about the influence of softness in such systems, partly due to the absence of appropriate model systems. Additionally, investigating higher volume fractions for long rods is usually complicated because non-equilibrium dynamical arrest is likely to precede the formation of more defined states.
View Article and Find Full Text PDFPhys Rev E
June 2024
Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XQ, United Kingdom.
The transition from a nematic to an isotropic state in a self-closing spherical liquid crystal shell with tangential alignment is a stimulating phenomenon to investigate, as the topology dictates that the shell exhibits local isotropic points at all temperatures in the nematic phase range, in the form of topological defects. The defects may thus be expected to act as nucleation points for the phase transition upon heating beyond the bulk nematic stability range. Here we study this peculiar transition, theoretically and experimentally, for shells with two different configurations of four +1/2 defects, finding that the defects act as the primary nucleation points if they are co-localized in each other's vicinity.
View Article and Find Full Text PDFAnal Chem
July 2024
MOE Key Laboratory of Geriatric Nutrition and Health, Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China.
It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!