The present study investigated the anti-tumor activity of N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a potent and specific inhibitor of transient receptor potential cation channel subfamily M member 8 (TRPM8) in prostate cancer (PCa) DU145 cells. TRPM8 expression in DU145 and normal prostate PNT1A cells was detected by reverse transcription polymerase chain reaction and western blot analysis. The effect of BCTC on DU145 cells was analyzed by flow cytometry analysis, and MTT, scratch motility and Transwell invasion assays. The molecular mechanism through which BCTC acts was investigated by western blot analysis. TRPM8 expression was increased in DU145 cells compared with PNT1A cells at the mRNA and protein levels. The present study provided evidence that inhibition of TRPM8 by BCTC reduced the viability of DU145 cells, but not PNT1A cells. In addition, BCTC inhibited cell cycle progression, migration and invasion in DU145 cells. Cell cycle-associated proteins, including phosphorylated protein kinase B, cyclin D1, cyclin dependent kinase (CDK) 2 and CDK6 were downregulated by BCTC, while phosphorylated glycogen synthase kinase 3β was upregulated. However, investigations in the present study revealed that BCTC failed to trigger apoptosis in DU145 cells. In addition, in BCTC-treated DU145 cells, phosphorylated extracellular signal-regulated kinase 1/2 was downregulated substantially while phosphorylated p38 (p-p38) and phosphorylated c-Jun N-terminal kinases (p-JNK) were upregulated. The anti-proliferative activity of BCTC on DU145 cells was attenuated by p38 and JNK-specific inhibitors, suggesting that MAPK pathways are involved. Overall, the TRPM8 specific antagonist BCTC demonstrated excellent anti-tumor activity in PCa DU145 cells, and therefore has the potential to become a targeted therapeutic strategy against PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727066PMC
http://dx.doi.org/10.3892/ol.2015.3854DOI Listing

Publication Analysis

Top Keywords

du145 cells
40
cells
13
anti-tumor activity
12
pnt1a cells
12
du145
11
bctc
10
prostate cancer
8
pca du145
8
trpm8 expression
8
western blot
8

Similar Publications

Purpose: Developmentally regulated GTP-binding protein 2 (DRG2) regulates microtubule dynamics and G2/M arrest during docetaxel treatment. Poly ADP-ribose polymerase (PARP) acts as an important repair system for DNA damage caused by docetaxel treatment. This study investigated whether DRG2 expression affects response to PARP inhibitors (olaparib) using prostate cancer cell lines PC3, DU145, LNCaP-FGC, and LNCaP-LN3.

View Article and Find Full Text PDF

Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.

View Article and Find Full Text PDF

Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.

View Article and Find Full Text PDF

Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.

Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.

Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .

Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!