Patients with apraxia perform poorly when demonstrating how an object is used, particularly when pantomiming the action. However, these patients are able to accurately identify, and to pick up and move objects, demonstrating intact ventral and dorsal stream visuomotor processing. Appropriate object manipulation for skilled use is thought to rely on integration of known and visible object properties associated with "ventro-dorsal" stream neural processes. In apraxia, it has been suggested that stored object knowledge from the ventral stream may be less readily available to incorporate into the action plan, leading to an over-reliance on the objects' visual affordances in object-directed motor behavior. The current study examined grasping performance in left hemisphere stroke patients with (N = 3) and without (N = 9) apraxia, and in age-matched healthy control participants (N = 14), where participants repeatedly grasped novel cylindrical objects of varying weight distribution. Across two conditions, object weight distribution was indicated by either a memory-associated cue (object color) or visual-spatial cue (visible dot over the weighted end). Participants were required to incorporate object-weight associations to effectively grasp and balance each object. Control groups appropriately adjusted their grasp according to each object's weight distribution across each condition, whereas throughout the task two of the three apraxic patients performed poorly on both the memory-associated and visual-spatial cue conditions. A third apraxic patient seemed to compensate for these difficulties but still performed differently to control groups. Patients with apraxia performed normally on the neutral control condition when grasping the evenly weighted version. The pattern of behavior in apraxic patients suggests impaired integration of visible and known object properties attributed to the ventro-dorsal stream: in learning to grasp the weighted object accurately, apraxic patients applied neither pure knowledge-based information (the memory-associated condition) nor higher-level information given in the visual-spatial cue condition. Disruption to ventro-dorsal stream predicts that apraxic patients will have difficulty learning to manipulate new objects on the basis of information other than low-level visual cues such as shape and size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733863 | PMC |
http://dx.doi.org/10.3389/fnhum.2016.00008 | DOI Listing |
Neurol Res Pract
January 2025
Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
Background: Apraxia is a motor-cognitive disorder that primary sensorimotor deficits cannot solely explain. Previous research in stroke patients has focused on damage to the fronto-parietal praxis networks in the left hemisphere (LH) as the cause of apraxic deficits. In contrast, the potential role of the (left) primary motor cortex (M1) has largely been neglected.
View Article and Find Full Text PDFNeurology
December 2024
From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany.
Neurosci Biobehav Rev
July 2024
Université de Franche-Comté, UMR INSERM 1322, LINC, Besançon F-25000, France; Maison des Sciences de l'Homme et de l'Environnement (UAR 3124), Besançon, France; Unité de Neurologie Vasculaire, CHU Besançon, France. Electronic address:
Limb apraxia is a motor disorder frequently observed following a stroke. Apraxic deficits are classically assessed with four tasks: tool use, pantomime of tool use, imitation, and gesture understanding. These tasks are supported by several cognitive processes represented in a left-lateralized brain network including inferior frontal gyrus, inferior parietal lobe (IPL), and lateral occipito-temporal cortex (LOTC).
View Article and Find Full Text PDFObjectives: Apraxia is a core feature of Alzheimer's disease, but the pathomechanism of this characteristic symptom is not well understood. Here, we systematically investigated apraxia profiles in a well-defined group of patients with Alzheimer's disease (AD; N=32) who additionally underwent PET imaging with the second-generation tau PET tracer [18F]PI-2620. We hypothesized that specific patterns of tau pathology might be related to apraxic deficits.
View Article and Find Full Text PDFMem Cognit
February 2024
School of Psychology, University of Plymouth, Plymouth, UK.
Neuropsychological evidence suggests that visuospatial memory is subserved by two separable processing systems, with dorsal underpinnings for global form and ventral underpinnings for the integration of part elements. Previous drawing studies have explored the effects of Gestalt organisation upon memory for hierarchical stimuli, and we here present an exploratory study of an apraxic dorsal stream patient's (MH) performance. We presented MH with a stimulus set (previously reported by Riddoch et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!