Madin-Darby canine kidney II cells transfected with one or several transport proteins are commonly used models to study drug transport. In these cells, however, endogenous transporters such as canine Mdr1/P-glycoprotein (Abcb1) complicate the interpretation of transport studies. The aim of this investigation was to establish a Madin-Darby canine kidney II cell line using CRISPR-Cas9 gene-editing technology to knock out endogenous canine Mdr1 (cMdr1) expression. CRISPR-Cas9-mediated Abcb1 homozygous disruption occurred at frequencies of around 20% and resulted in several genotypes. We selected 1 clonal cell line, cMdr1 KO Cl2, for further examination. Consistent with an on-target effect of CRISPR-Cas9 in specific regions of the endogenous canine Abcb1 gene, we obtained a cell clone with Abcb1 gene alterations and without any cMdr1 expression, as confirmed by genome sequencing and quantitative protein analysis. Functional studies of these cells, using digoxin and other prototypic MDR1 substrates, showed close to identical transport in the apical-to-basolateral and basolateral-to-apical directions, resulting in efflux ratios indistinguishable from unity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0022-3549(15)00171-9DOI Listing

Publication Analysis

Top Keywords

madin-darby canine
8
canine kidney
8
endogenous canine
8
cmdr1 expression
8
abcb1 gene
8
abcb1
5
canine
5
complete knockout
4
endogenous
4
knockout endogenous
4

Similar Publications

Biocompatible Iron Oxide Nanoparticles Display Antiviral Activity Against Two Different Respiratory Viruses in Mice.

Int J Nanomedicine

December 2024

Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.

View Article and Find Full Text PDF

Wound healing is a complex biological process critical for maintaining an organism's structural integrity and tissue repair following an infection or injury. Recent studies have unveiled the mechanisms involving the coordination of biochemical and mechanical responses in the tissue in wound healing. In this article, we focus on the healing property of an epithelial tissue as a material while the effects of biological mechanisms such as cell proliferation, tissue intercalation, cellular migration, cell crawling, and filopodia protrusion is minimal.

View Article and Find Full Text PDF

Influenza is a disease of significant morbidity and mortality. The number of anti-influenza drugs is small; many of them stimulate the appearance of resistant strains. This article presents the results of assessing the antiviral activity of 1,2,3-triazole-containing derivatives of alkaloid lupinine for their ability to suppress the reproduction of orthomyxoviruses (influenza viruses: A/Vladivostok/2/09 (H1N1) and A/Almaty/8/98 (H3N2)).

View Article and Find Full Text PDF

Graphene oxide-mediated photothermal therapy using femtosecond lasers has recently shown promise in treating hepatocellular carcinoma. However, significant work remains to optimize irradiation parameters for specific nanoparticle types and cancer cells to improve nanomaterial-mediated photothermal anticancer therapy. This study investigated the photothermal potential of nGO and nGO-PEG nanoparticles (NPs) combined with femtosecond laser irradiation at 515 nm and 1030 nm wavelengths, with varying power (0.

View Article and Find Full Text PDF

Madin-Darby canine kidney (MDCK) cells are the recognized cell strain for influenza vaccine production. However, the tumorigenic potential of MDCK cells raises concerns about their use in biological product manufacturing. To reduce MDCK cells' tumorigenicity and ensure the safety of influenza vaccine production, a B-cell lymphoma extra-large (Bcl-xL) gene, which plays a pivotal role in apoptosis regulation, was knocked-out in original MDCK cells by CRISPR-Cas9 gene editing technology, so that a homozygous MDCK-Bcl-xL-/- cell strain was acquired and named as BY-02.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!