Over the last few years, the use of organophosphate flame retardants (OPFRs) has been on the rise; however, there are knowledge gaps in both the human health effects of OPFRs and levels of human exposure. Currently, human biomonitoring data on the levels of OPFR metabolites in the Canadian population are still non-existent. Herein we describe a novel method to measure nine urinary OPFR metabolites using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The method detection limits were between 0.08 and 0.25ng/mL for target metabolites. The newly developed and validated method was applied to the analysis of 24 urine samples collected in 2010-12 from pregnant Canadian women. The most frequently detected OPFR metabolite in urine of study participants (detection frequency: 97%) was diphenyl phosphate (DPHP), with concentrations ranging between <0.13-25.2ng/mL, followed (75%) by the sum of two metabolites (DoCP: Di-o-cresyl phosphate and DpCP: Di-p- cresyl phosphate) of tricresyl phosphate, with concentrations between <0.13-4.38ng/mL. With the exception of desbutyl-tris-(2-butoxy-ethyl) phosphate which was not detected in any of the samples, all other OPFR metabolites measured were found among study participants with variable detection frequency, suggesting pregnant Canadian women may be exposed to OPFRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2016.01.035 | DOI Listing |
Environ Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea. Electronic address:
Sci Total Environ
January 2025
Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:
2-Ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer easily released into the environment. Its biological toxicity is of great concern. The lung is considered a possible target organ for EHDPHP, but currently, there are limited studies on the biotoxicity of EHDPHP in poultry lungs.
View Article and Find Full Text PDFBMC Genomics
January 2025
Laboratory for Marine Ecology and Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
Background: Tris (2-chloroethyl) phosphate (TCEP), a widely used flame retardant, is widespread in the environment and potentially harmful to organisms. However, the specific mechanisms of TCEP-induced neurological and reproductive toxicity in fish are largely unknown. Turbot (Scophthalmus maximus) is cultivated on a large scale, and the emergence of pollutants with endocrine disrupting effects seriously affects its economic benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!